ABSTRACT
In recent years, various studies have focused on massive MIMO systems, which are considered to play an important role in 5G. Massive MIMO systems are MIMO systems in which the decoders and/or probes contain very good antennas. A larger number of antennas allows for higher performance and higher energy efficiency. Several types of antennas can be used for this purpose, one of which is called smart antennas. Smart antennas allow for increased capacity in wireless communication systems by reducing multi-channel interference and channel interference, which can be done by focusing the signal radiation in the intended direction and varying that radiation according to the signal’s surroundings or different interference situations using beamforming technology. This project report will present beamforming techniques, beamforming algorithms in 5G networks, and evaluate some beamforming algorithms for adaptive array antennas applied in 5G networks.
References
[1] Ahmed, I., Khammari, H., Shahid, A., Musa, A., Kim, K. S., De Poorter, E., & Moerman, I. (2018). A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives. IEEE Communications Surveys & Tutorials, 20(4), 3060–3097.
[2] Gohil, A., Modi, H., & Patel, S. K. (2013) 5G technology of mobile communication: A survey, In Intelligent systems and signal processing (ISSP), 2013 international conference on, IEEE, pp. 288–292.
[3] Srar, J. A., Chung, K.-S., & Mansour, A. (2011) Performance of an LLMS beamformer in the presence of element gain and spacing variations. In Communications (APCC), 2011 17th Asia-Pacific Conference on, IEEE, pp. 593–598.
[4] Razavizadeh, S. M., Ahn, M., & Lee, I. (2014). Three-dimensional beamforming: A new enabling technology for 5G wireless networks. IEEE Signal Processing Magazine, 31(6), 94–101.
[5] Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave m4assive mimo: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.
[6] Debaillie, B., van Liempd, B., Hershberg, B., Craninckx, J., Rikkinen, K., van den Broek, D.-J., Klumperink, E. A., & Nauta, B. (2015) In-band full-duplex transceiver technology for 5g mobile networks. In European Solid-state circuits conference (ESSCIRC), ESSCIRC 2015-41st, IEEE, pp. 84–87.
[7] Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655.
[8] Pirinen, P. (2014) A brief overview of 5G research activities. In 1st international conference on 5G for ubiquitous connectivity, IEEE, pp. 17–22.
[9] Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Roh, W., & Sayeed, A. M. (2016). An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 436–453.
[10] Gao, Z., Dai, L., Mi, D., Wang, Z., Imran, M. A., & Shakir, M. Z. (2015). Mmwave massive-MIMO-based wireless backhaul for the 5g ultra-dense network. IEEE Wireless Communications, 22(5), 13–21.
[11] Srar, J. A., Chung, K.-S., & Mansour, A. (2010). A new LLMS algorithm for antenna array beamforming. In Wireless communications and networking conference (WCNC), 2010 IEEE, pp. 1–5.
[12] Prasad, A. S., Vasudevan, S., Selvalakshmi, R., Ram, K. S., Subhashini, G., Sujitha, S., &Narayanan, B. S. (2011) Analysis of adaptive algorithms for digital beamforming in smart antennas. In Recent trends in information technology (ICRTIT), 2011 international conference on, IEEE, 2011, pp. 64–68.
[13] Yasin, M., Akhtar, P., & Pathan, A. H. (2012). Performance analysis of Bessel beamformer in AWGN channel model using digital modulation technique. Research Journal of Applied Sciences, Engineering and Technology, 4(21), 4408–4416.
[14] Yasin, M., Akhtar, P., & Pathan, A. H. (2014). Mathematical model of Bessel beamformer with automatic gain control for smart antenna array system in Rayleigh fading channel. IEEJ Transactions on Electrical and Electronic Engineering, 9(3), 229–234.
[15] Debaillie, B., van Liempd, B., Hershberg, B., Craninckx, J., Rikkinen, K., van den Broek, D.-J., Klumperink, E. A., & Nauta, B. (2015) In-band full-duplex transceiver technology for 5g mobile networks. In European Solid-state circuits conference (ESSCIRC), ESSCIRC 2015-41st, IEEE, pp. 84–87.
[16] Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications, 14(11), 6481–6494.
[17] Srar, J. A., & Chung, K.-S. (2009) Adaptive rlms algorithm for antenna array beamforming, In TENCON 2009-2009 IEEE Region 10 Conference, IEEE, pp. 1–6.
[18] Srar, J. A., Chung, K.-S., & Mansour, A. (2010). Analysis of the RLMS adaptive beamforming algorithm implemented with finite precision, In Communications (APCC), 2010 16th Asia-Pacific Conference on, IEEE, pp. 231–236.
[19] Srar, J. A., Chung, K.-S., & Mansour, A. (2010). A new llms algorithm for antenna array beamforming, In Wireless Communications and Networking Conference (WCNC), 2010 IEEE, pp. 1–5.
[20] Srar, J. A., Chung, K.-S., & Mansour, A. (2010). Adaptive array beamforming using a combined LMS-LMS algorithm. IEEE Transactions on Antennas and Propagation, 58(11), 3545–3557.
[21] Srar, J. A., Chung, K.-S., & Mansour, A. (2011) Performance of an LLMS beamformer in the presence of element gain and spacing variations. In Communications (APCC), 2011 17th Asia-Pacific Conference on, IEEE, pp. 593–598.
[22] Prasad, A. S., Vasudevan, S., Selvalakshmi, R., Ram, K. S., Subhashini, G., Sujitha, S., &Narayanan, B. S. (2011) Analysis of adaptive algorithms for digital beamforming in smart antennas. In Recent trends in information technology (ICRTIT), 2011 international conference on, IEEE, 2011, pp. 64–68.
[23] Yasin, M., & Akhtar, P. (2012) Performance analysis of Bessel beamformer with LMS algorithm for smart antenna array, In Open source systems and technologies (ICOSST), 2012 international conference on, IEEE, pp. 1–5.
[24] Yasin, M., Akhtar, P., & Pathan, A. H. (2012). Performance analysis of Bessel beamformer in AWGN channel model using digital modulation technique. Research Journal of Applied Sciences, Engineering and Technology, 4(21), 4408–4416.
[25] Yasin, M., & Akhtar, P. (2014). Mathematical model of Bessel beamformer with automatic gain control for smart antenna array system. Arabian Journal for Science and Engineering, 39(6), 4837–4844.
[26] Yasin, M., Akhtar, P., & Pathan, A. H. (2014). Mathematical model of Bessel beamformer with automatic gain control for smart antenna array system in Rayleigh fading channel. IEEJ Transactions on Electrical and Electronic Engineering, 9(3), 229–234.
[27] Lee, W., Lee, S.-R., Kong, H.-B., & Lee, I. (2013). 3D beamforming designs for single user MIMO systems, In (2013) IEEE global communications conference (GLOBECOM), IEEE, pp. 3914–3919.
[28] Reis, J. R., Caldeirinha, R. F., Hammoudeh, A., & Copner, N. (2017). Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering. IEEE Transactions on Antennas and Propagation, 65(9), 4880–4885.
[29] Ribeiro, C., Gomes, R., Duarte, L., Hammoudeh, A., & Caldeirinha, R. F. (2020). Multi-gigabit/s OFDM real-time based transceiver engine for emerging 5G MIMO systems. Physical Communication, 38, 100957.
[30] Razavizadeh, S. M., Ahn, M., & Lee, I. (2014). Three-dimensional beamforming: A new enabling technology for 5G wireless networks. IEEE Signal Processing Magazine, 31(6), 94–101.
[31] Jang, J., Chung, M., Hwang, S. C., Lim, Y.-G., Yoon, H.-J., Oh, T., Min, B.-W., Lee, Y., Kim, K. S., Chae, C.-B., et al. (2016). Smart small cell with hybrid beamforming for 5G: Theoretical feasibility and prototype results. IEEE Wireless Communications, 23(6), 124–131.
[32] Johnson, J. M., & Rahmat-Samii, Y. (1994) Genetic algorithm optimization and its application to antenna design, In Antennas and propagation society international symposium, 1994. AP-S. Digest, IEEE, Vol. 1, pp. 326–329.
[33] Shimizu, M. (1994). Determining the excitation coefficients of an array using genetic algorithms, In Antennas and propagation society international symposium, 1994. AP-S. Digest, IEEE, Vol. 1, pp. 530–533.
[34] Abohamra, Y. A., Solymani, M., & Shayan, Y. R. (2017). Optimum scheduling based on beamforming for the fifth generation of mobile communication systems, In (2017) 8th IEEE annual information technology, electronics and mobile communication conference (IEMCON), IEEE, pp. 332–339.
[35] Abohamra, Y., Soleymani, M., & Shayan, Y. R. (2019). Using beamforming for dense frequency reuse in 5G. IEEE Access, 7, 9181–9190.
[36] Attallah, S. (2006). The wavelet transform-domain LMS adaptive filter with partial subband-coefficient updating. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(1), 8–12.
[37] Lopes, P. A., Tavares, G., & Gerald, J. B. (2007). A new type of normalized LMS algorithm based on the kalman filter, In 2007 IEEE international conference on acoustics, speech and signal processing-ICASSP’07, IEEE, Vol. 3, pp. III–1345.
[38] Li, X.; Wan, Y.; Liu, J.; Jiang, D.; Bai, T.; Zhu, K.; Wang, W.Q.: Broadband electronically scanned reflectarray antenna with liquid crystals. IEEE Antennas Wirel. Propag. Lett. (2021).
[39] Lin, T.; Zhu, Y.: Beamforming design for large-scale antenna arrays using deep learning. IEEE Wirel. Commun. (2019).
[40] Foutz, J., Spanias, A., & Banavar, M. K. (2008). Narrowband direction of arrival estimation for antenna arrays. Synthesis Lectures on Antennas, 3(1), 1–76.
[41] Lopes, P. A., Tavares, G., & Gerald, J. B. (2007). A new type of normalized LMS algorithm based on the kalman filter, In 2007 IEEE international conference on acoustics, speech and signal processing-ICASSP’07, IEEE, Vol. 3, pp. III–1345.
[42] Xiao, X.; Lu, Y.: Data-based model for wide nulling problem in adaptive digital beamforming antenna array. IEEE Antennas Wirel. Propag. Lett. (2019).
[43] Attallah, S. (2006). The wavelet transform-domain LMS adaptive filter with partial subband-coefficient updating. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(1), 8–12.
[44] Sohrabi, F.; Yu, W.: Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Top. Signal Process. (2016).
[45] Tan, M.C.; Li, M.; Abbasi, Q.H.; Imran, M.A.: A wideband beamforming antenna array for 802.11 ac and 4.9 GHz in modern transportation market. IEEE Trans. Veh. Technol. (2019).
[46] Nam, I.J.; Lee, S.; Kim, D.: Miniaturized beam reconfigurable reflectarray antenna with wide 3-D beam coverage. IEEE Trans. Antennas Propag. (2021).
[47] Kim, C., Kim, T., Seol, J.Y., 2013. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. IEEE Globecom Workshops, p.61–65.
[48] Javed, A.R.; Abid, R.; Aslam, B.; Khalid, H.A.; Khan, M.Z.; Alhazmi, O.H.; Rizwan, M.: Green5G: enhancing capacity and coverage in device-to-device communication. Comput. Mater. Contin. (2021)
[49] Gotsis, K.A., Sahalos, J.N., 2011. Beamforming in 3G and 4G mobile communications: the switched-beam approach. In: Maícas, J.P. (Ed.), A Multidisciplinary Approach. InTech, p.201–216.
[50] Hur, S., Kim, T., Love, D.J., et al., 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun., 61(10): 4391–4403.
Download all article in PDF