ABSTRACT
Nano fibers, characterized by their one-dimensional structure and nanoscale diameters, exhibit exceptional properties, including high surface area, flexibility, and mechanical strength. This review article provides a comprehensive overview of recent advancements in chemical synthesis methods for nano fibers, including electrospinning, template-assisted synthesis, vapor-phase deposition, and self-assembly. The applications of nano fibers are diverse, encompassing biomedical engineering, energy storage, catalysis, sensors, and filtration. The tenability and versatility of nano fibers make them promising candidates for addressing current challenges in these fields. However, further research and development are necessary to optimize synthesis methods and explore new applications to fully realize the potential of nano fibers.
References
[1] Agarwal, S., Greiner, A., & Wendorff, J. H. (2009). Electrospinning of manmade and biopolymer nanofibers—progress in techniques, materials, and applications. Advanced functional materials, 19(18), 2863-2879.
[2] Ahmadian, A., Shafiee, A., Aliahmad, N., & Agarwal, M. (2021). Overview of nano-fiber mats fabrication via electrospinning and morphology analysis. Textiles, 1(2), 206-226.
[3] Ahmadian, E., Eftekhari, A., Janas, D., & Vahedi, P. (2023). Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: a perspective. Nanotheranostics, 7(1), 61.
[4] Alghoraibi, I., & Alomari, S. (2018). Different methods for nanofiber design and fabrication. Handbook of nanofibers, 1, 46.
[5] Almetwally, A. A., El-Sakhawy, M., Elshakankery, M. H., & Kasem, M. H. (2017). Technology of nano-fibers: Production techniques and properties-Critical review. J. Text. Assoc, 78(1), 5-14.
[6] Alonzo, M., Primo, F. A., Kumar, S. A., Mudloff, J. A., Dominguez, E., Fregoso, G., … & Joddar, B. (2021). Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Current opinion in biomedical engineering, 17, 100248.
[7] Ambekar, R. S., & Kandasubramanian, B. (2019). Advancements in nanofibers for wound dressing: A review. European Polymer Journal, 117, 304-336.
[8] Anjum, S., Rahman, F., Pandey, P., Arya, D. K., Alam, M., Rajinikanth, P. S., & Ao, Q. (2022). Electrospun biomimetic nanofibrous scaffolds: a promising prospect for bone tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 23(16), 9206.
[9] Anselme, K., Davidson, P., Popa, A. M., Giazzon, M., Liley, M., & Ploux, L. (2010). The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomaterialia, 6(10), 3824-3846.
[10] Asadi, N., Del Bakhshayesh, A. R., Davaran, S., & Akbarzadeh, A. (2020). Common biocompatible polymeric materials for tissue engineering and regenerative medicine. Materials Chemistry and Physics, 242, 122528.
[11] Asmatulu, R., & Khan, W. S. (2018). Synthesis and applications of electrospun nanofibers. Elsevier.
Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites science and technology, 70(5), 703-718.
[12] Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I. S., & Bechelany, M. (2019). Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today, 17, 1-35.
[13] Benzigar, M. R., Dasireddy, V. D., Guan, X., Wu, T., & Liu, G. (2020). Advances on emerging materials for flexible supercapacitors: current trends and beyond. Advanced Functional Materials, 30(40), 2002993.
[14] Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology advances, 28(3), 325-347.
[15] Bhat, S., Uthappa, U. T., Altalhi, T., Jung, H. Y., & Kurkuri, M. D. (2021). Functionalized porous hydroxyapatite scaffolds for tissue engineering applications: a focused review. ACS Biomaterials Science & Engineering, 8(10), 4039-4076.
[16] Biazar, E. (2017). Application of polymeric nanofibers in medical designs, part I: skin and eye. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(10), 521-531.
[17] Boudriot, U., Dersch, R., Greiner, A., & Wendorff, J. H. (2006). Electrospinning approaches toward scaffold engineering—a brief overview. Artificial organs, 30(10), 785-792.
[18] Brown, T. D., Dalton, P. D., & Hutmacher, D. W. (2016). Melt electrospinning today: An opportune time for an emerging polymer process. Progress in Polymer Science, 56, 116-166.
[19] Bürck, J., Heissler, S., Geckle, U., Ardakani, M. F., Schneider, R., Ulrich, A. S., & Kazanci, M. (2013). Resemblance of electrospun collagen nanofibers to their native structure. Langmuir, 29(5), 1562-1572.
[20] Cheng, Y., Ramos, D., Lee, P., Liang, D., Yu, X., & Kumbar, S. G. (2014). Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. Journal of biomedical nanotechnology, 10(2), 287-298.
[21] Chen, Z., Mo, X., He, C., & Wang, H. (2008). Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydrate polymers, 72(3), 410-418.
[22] Chen, X., Fan, H., Deng, X., Wu, L., Yi, T., Gu, L., … & Zhang, X. (2018). Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Nanomaterials, 8(11), 960.
[23] Cichorek, M., Wachulska, M., Stasiewicz, A., & Tymińska, A. (2013). Skin melanocytes: biology and development. Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii, 30(1), 30-41.
[24] Cid, R., & Bolívar, J. (2021). Platforms for production of protein-based vaccines: from classical to next-generation strategies. Biomolecules, 11(8), 1072.
[25] Ciftci, D., Ubeyitogullari, A., Huerta, R. R., Ciftci, O. N., Flores, R. A., & Saldaña, M. D. (2017). Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. The Journal of Supercritical Fluids, 127, 137-145.
Download all article in PDF