ABSTRACT
Global environmental concerns and greater knowledge of renewable green resources have led to increased efforts to produce eco-friendly and biodegradable materials for composite products. The increased use of natural materials in composites has resulted in lower greenhouse gas emissions and carbon footprints. For decades, concerned scholars have been strongly looking for techniques and procedures for the development of sustainable green products in the industry. Ceiling boards are part of the interior buildings that have gained more concern in the building industry facing challenges in developing durable and environmentally friendly products. Efforts to produce low-cost ceiling boards that will provide covering and aesthetics, prevent heat transfer, and absorb less water have evolved. This work identifies the most commonly used conventional ceiling boards and their environmental effects, as well as the various composites produced from waste materials and agricultural products to curb the adverse effects posed by these conventional ceiling boards. To achieve these goals, a comprehensive analysis of the literature was conducted, with a focus on recent advancements in green composite materials. Analyzing scholarly publications describing the creation and use of organic waste materials in ceiling boards was part of the review process.
References
[1] S. Nandy et al., “Cellulose: A Contribution for the Zero e-Waste Challenge,” Adv. Mater. Technol., vol. 6, no. 7, pp. 1–59, 2021, doi: 10.1002/admt.202000994.
[2] O. J. Olujobi, D. E. Ufua, M. Olokundun, and O. M. Olujobi, “Conversion of organic wastes to electricity in Nigeria: legal perspective on the challenges and prospects,” Int. J. Environ. Sci. Technol., vol. 19, no. 2, pp. 939–950, 2021, doi: 10.1007/s13762-020-03059-3.
[3] W. Parahita and D. Yudiarti, “Rice Husk Waste Exploration: From Nothing into Something Valuable,” 2020, doi: 10.4108/eai.2-11-2019.2294936.
[4] J. Han, W. Li, D. Liu, L. Qin, W. Chen, and F. Xing, “Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis,” J. Anal. Appl. Pyrolysis, vol. 129, no. December 2017, pp. 1–5, 2018, doi: 10.1016/j.jaap.2017.12.016.
[5] J. Zhang et al., “Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture,” Constr. Build. Mater., vol. 180, pp. 605–613, 2018, doi: 10.1016/j.conbuildmat.2018.05.268.
[6] V. B. M. Ramesh, L. Rajeshkumar, D. Balaji, Green Composite Using Agricultural Waste Reinforcement. Springer, Singapore, 2021.
[7] N. Uviesherhe, O E (Namdi Azikiwe University, Awka, U. C. Okonkwo, and N. Onwuamaeze, I P (Petroleum Training Institute, Efferum, “Optimization of Chicken Feather Fibre Reinforced Composite with Epoxy Optimization of Chicken Feather Fibre Reinforced Composite with Epoxy,” Elixir Int. J., vol. 81, no. January 2015, pp. 31974–31977, 2015.
[8] S. M. Khoshnava, R. Rostami, R. M. Zin, D. Štreimikienė, A. Mardani, and M. Ismail, “The role of green building materials in reducing environmental and human health impacts,” Int. J. Environ. Res. Public Health, vol. 17, no. 7, 2020, doi: 10.3390/ijerph17072589.
[9] H. Clemens, S. Mayer, and C. Scheu, “Microstructure and Properties of Engineering Materials,” Neutrons Synchrotron Radiat. Eng. Mater. Sci. From Fundam. to Appl. Second Ed., pp. 3–20, 2017, doi: 10.1002/9783527684489.ch1.
[10] R. Šafarič et al., “Preparation and characterisation of waste poultry feathers composite fibreboards,” Materials (Basel)., vol. 13, no. 21, pp. 1–17, 2020, doi: 10.3390/ma13214964.
[11] J. Dirisu et al., “Utilization of Waste Materials for Eco-Friendly Building Ceilings: An Overview,” Key Eng. Mater., vol. 917 KEM, no. August 2023, pp. 285–295, 2022, doi: 10.4028/p-1i2y29.
[12] Y. Zeleke and G. K. Rotich, “Design and Development of False Ceiling Board Using Polyvinyl Acetate (PVAc) Composite Reinforced with False Banana Fibres and Filled with Sawdust,” Int. J. Polym. Sci., vol. 2021, 2021, doi: 10.1155/2021/5542329.
[13] A. K. Mohanty, S. Vivekanandhan, J. M. Pin, and M. Misra, “Composites from renewable and sustainable resources: Challenges and innovations,” Science (80-. )., vol. 362, no. 6414, pp. 536–542, 2018, doi: 10.1126/science.aat9072.
[14] S. Taj, M. A. Munawar, and S. Khan, “Natural fiber-reinforced polymer composites NATURAL FIBER-REINFORCED POLYMER COMPOSITES,” Pakistan Acad. Sci., vol. 44, no. 2, pp. 129–144, 2007.
[15] F. M. AL-Oqla, S. M. Sapuan, M. R. Ishak, and A. A. Nuraini, “Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model,” Comput. Electron. Agric., vol. 113, pp. 116–127, 2015, doi: 10.1016/j.compag.2015.01.011.
[16] J. O. Dirisu, O. S. I. Fayomi, S. O. Oyedepo, and E. T. Akinlabi, “A Preliminary Study on Chemical and Physical Properties of Coconut Shell Powder as an Enhancer in Building Ceilings for Construction Industry: A Mini Review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 640, no. 1, 2019, doi: 10.1088/1757-899X/640/1/012063.
[17] J. H. Du, J. Bai, and H. M. Cheng, “The present status and key problems of carbon nanotube based polymer composites,” Express Polym. Lett., vol. 1, no. 5, pp. 253–273, 2007, doi: 10.3144/expresspolymlett.2007.39.
[18] M. Biron, “Outline of the Actual Situation of Plastics Compared to Conventional Materials,” Thermoplast. Thermoplast. Compos., pp. 1–29, 2013, doi: 10.1016/b978-1-4557-7898-0.00001-9.
[19] S. Obam, “Properties of saw-dust, paper and starch composite ceiling board,” Am. J. Sci. Ind. Res., vol. 3, no. 5, pp. 300–304, 2012, doi: 10.5251/ajsir.2012.3.5.300.304.
[20] T. Chen, X. M. Sun, and L. Wu, “High Time for Complete Ban on Asbestos Use in Developing Countries,” JAMA Oncol., vol. 5, no. 6, pp. 779–780, 2019, doi: 10.1001/jamaoncol.2019.0446.
[21] F. Iucolano, L. Boccarusso, and A. Langella, “Hemp as eco-friendly substitute of glass fibres for gypsum reinforcement: Impact and flexural behaviour,” Compos. Part B Eng., vol. 175, p. 107073, 2019, doi: 10.1016/j.compositesb.2019.107073.
[22] N. Kazemian, S. Pakpour, A. S. Milani, and J. Klironomos, “Environmental factors influencing fungal growth on gypsum boards and their structural biodeterioration: A university campus case study,” PLoS One, vol. 14, no. 8, pp. 1–18, 2019, doi: 10.1371/journal.pone.0220556.
[23] A. Jiménez-Rivero and J. García-Navarro, Management of end-of-life gypsum in a circular economy. Elsevier Ltd., 2020. doi: 10.1016/B978-0-12-819055-5.00005-X.
[24] Á. Serna, M. Del Río, J. G. Palomo, and M. González, “Improvement of gypsum plaster strain capacity by the addition of rubber particles from recycled tyres,” Constr. Build. Mater., vol. 35, pp. 633–641, 2012, doi: 10.1016/j.conbuildmat.2012.04.093.
World Scientific News 196 (2024) 129-133
[25] B. Szostakowski, P. Smitham, and W. S. Khan, “Plaster of Paris–Short History of Casting and Injured Limb Immobilzation,” Open Orthop. J., vol. 11, no. 1, pp. 291–296, 2017, doi: 10.2174/1874325001711010291.
[26] D. T. Novieto, R. K. Apawu, M. W. Apprey, and M. K. Ahiabu, “Plaster of Paris (POP) Installers’ Awareness of Occupational Hazards and Utilisation of Safety Measures in Ho Municipality, Ghana,” Cogent Eng., vol. 10, no. 1, 2023, doi: 10.1080/23311916.2023.2175454.
[27] J. Miliute-Plepiene, A. Fråne, and A. M. Almasi, “Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries,” Clean. Eng. Technol., vol. 4, no. August, p. 100246, 2021, doi: 10.1016/j.clet.2021.100246.
[28] C. Clemons, “Wood-plastic composites in the United States,” Forest Products Journal, vol. 52, no. 6. pp. 10–18, 2002.
[29] S. E. Selke and I. Wichman, “Wood fiber/polyolefin composites,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 3, pp. 321–326, 2004, doi: 10.1016/j.compositesa.2003.09.010.
[30] K. Jayaraman, “Manufacturing sisal-polypropylene composites with minimum fibre degradation,” Compos. Sci. Technol., vol. 63, no. 3–4, pp. 367–374, 2003, doi: 10.1016/S0266-3538(02)00217-8.
[31] J. P. Manaia, A. T. Manaia, and L. Rodriges, “Industrial hemp fibers: An overview,” Fibers, vol. 7, no. 12, pp. 1–16, 2019, doi: 10.3390/?b7120106.
[32] M. R. Nurul Fazita et al., “Green composites made of bamboo fabric and poly (lactic) acid for packaging applications-a review,” Materials (Basel)., vol. 9, no. 6, 2016, doi: 10.3390/ma9060435.
[33] S. N. A. Safri, M. T. H. Sultan, M. Jawaid, and K. Jayakrishna, “Impact behaviour of hybrid composites for structural applications: A review,” Compos. Part B Eng., vol. 133, pp. 112–121, 2018, doi: 10.1016/j.compositesb.2017.09.008.
[34] A. Maino, G. Janszen, and L. Di Landro, “Glass/Epoxy and Hemp/Bio based epoxy composites: Manufacturing and structural performances,” Polym. Compos., vol. 40, pp. E723–E731, 2019, doi: 10.1002/pc.24973.
[35] E. Bari, A. Sistani, H. R. Taghiyari, J. J. Morrell, and J. Cappellazzi, “Influence of test method on biodegradation of bamboo-plastic composites by fungi,” Maderas, Cienc. tecnol., vol. 19, no. 4, 2017, doi: http://dx.doi.org/10.4067/S0718-221X2017005000501.
[36] F. Yang et al., “Mechanical and biodegradation properties of bamboo fiber-reinforced starch/polypropylene biodegradable composites,” J. Appl. Polym. Sci., vol. 137, no. 20, pp. 1–8, 2020, doi: 10.1002/app.48694.
[37] G. Mishra, K. Giri, S. Panday, R. Kumar, and N. S. Bisht, “Bamboo: potential resource for eco-restoration of degraded lands,” J. Biol. Earth Sci., vol. 4, no. 2, pp. 130–136, 2014.
[38] Z. Ben-zhi, F. Mao-yi, X. Jin-zhong, Y. Xiao-sheng, and L. Zheng-cai, “Ecological functions of bamboo forest: Research and Application,” J. For. Res., vol. 16, no. 2, pp. 143–147, 2005, doi: 10.1007/bf02857909.
[39] P. Van Der Lugt and H. Brezet, VanderLugt_2009_Bamboo.pdf, vol. 30, no. 30. 2009.
[40] J. G. Vogtländer, N. M. Van Der Velden, and P. Van Der Lugt, “Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; Cases on wood and on bamboo,” Int. J. Life Cycle Assess., vol. 19, no. 1, pp. 13–23, 2014, doi: 10.1007/s11367-013-0629-6.
World Scientific News 196 (2024) 130-133
[41] Y. I. TAKAGI, Hitoshi, “Effect of Fibre length on Mechanical Properties of ‘Green’ Composite Using a Starch-Based Resin and Short Bamboo Fibers,” JSME Internatiional J., vol. 2, no. 1, pp. 770–8506, 2004.
[42] V. Laemlaksakul, “Physical and mechanical properties of particleboard from bamboo waste,” World Acad. Sci. Eng. Technol., vol. 40, no. 4, pp. 566–570, 2010.
[43] D. Biswas, S. Kanti Bose, and M. Mozaffar Hossain, “Physical and mechanical properties of urea formaldehyde-bonded particleboard made from bamboo waste,” Int. J. Adhes. Adhes., vol. 31, no. 2, pp. 84–87, 2011, doi: 10.1016/j.ijadhadh.2010.11.006.
[44] G. U. Raju, S. Kumarappa, and V. N. Gaitonde, “Mechanical and physical characterization of agricultural waste reinforced polymer composites,” J. Mater. Environ. Sci., vol. 3, no. 5, pp. 907–916, 2012.
[45] G. U. Raju and S. Kumarappa, “Experimental study on mechanical properties of groundnut shell particle-reinforced epoxy composites,” J. Reinf. Plast. Compos., vol. 30, no. 12, pp. 1029–1037, 2011, doi: 10.1177/0731684411410761.
[46] A. B. Akinyemi, J. O. Afolayan, and E. Ogunji Oluwatobi, “Some properties of composite corn cob and sawdust particle boards,” Constr. Build. Mater., vol. 127, pp. 436–441, 2016, doi: 10.1016/j.conbuildmat.2016.10.040.
[47] A. O. Dotun, O. S. Olalekan, A. L. Olugbenga, and M. A. Emmanuel, “Physical and mechanical properties evaluation of corncob and sawdust cement bonded ceiling boards,” Int. J. Eng. Res. Africa, vol. 42, pp. 65–75, 2019, doi: 10.4028/www.scientific.net/JERA.42.65.
[48] C. O. Edmund, M. S. Christopher, and D. K. Pascal, “Characterization of palm kernel shell for materials reinforcement and water treatment,” J. Chem. Eng. Mater. Sci., vol. 5, no. 1, pp. 1–6, 2014, doi: 10.5897/jcems2014.0172.
[49] S. I. Ichetaonye et al., “Sustainable Alternative Ceiling Boards Using Palm Kernel Shell (PKS) and Balanite Shell (BS),” J. Polym. Environ., vol. 29, no. 12, pp. 3878–3886, 2021, doi: 10.1007/s10924-021-02156-9.
[50] Z. Ahmad, L. S. Wee, and M. A. Fauzi, “Mechanical properties of wood-wool cement composite board manufactured using selected Malaysian fast grown timber species,” ASM Sci. J., vol. 5, no. 1, pp. 27–35, 2011.
[51] J. Olorunmaiye and I. Ohijeagbon, “Retrofiting Composite Ceiling Boards With Jatropha Curcas Seedcake Material,” J. Prod. Eng, vol. 18, no. July, 2015.
[52] U. D. Idris, V. S. Aigbodion, C. U. Atuanya, and A. J, “Eco-friendly (water melon peels): Alternatives to wood-based particleboard composites,” Tribol. Ind., vol. 33, no. 4, pp. 173–181, 2011.
[53] B. Singh, Rice husk ash. Elsevier Ltd, 2018. doi: 10.1016/B978-0-08-102156-9.00013-4.
[54] S. I. Jesuloluwa and I. Bori, “Formation of Ceiling Boards by the Combination of Sugarcane Bagasse and Rice Husk,” 2018, [Online]. Available: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/14215
[55] C. O. Ataguba, “Properties of Ceiling Boards Produced From a Composite of Waste Paper and Rice Husk,” Int. J. Adv. Sci. Eng. Technol., no. 2, pp. 117–121, 2016.
[56] A. K. Temitope, “Recycling of Rice Husk into a Locally-Made Water-Resistant Particle Board,” Ind. Eng. Manag., vol. 04, no. 03, 2015, doi: 10.4172/2169-0316.1000164.
[57] I. Y. Suleiman, V. S. Aigbodion, L. . Shaibu, and M. . Shangalo, “Development of Eco-Friendly Particleboard Composites Using Rice Development of Eco-Friendly Particleboard Composites Using Rice,” J. Mater. Sci. Eng. with Adv. Technol., vol. 7, no. November 2013, pp. 75–91, 2013, [Online]. Available: https://www.researchgate.net/publication/305682149_DEVELOPMENT_OF_ECO-FRIENDLY_PARTICLEBOARD_COMPOSITES_USING_RICE_HUSK_PARTICLES_AND_GUM_ARABIC
[58] and S. K. Isheni, Yakubu, B. S. Yahaya, M. A. Mbishida, F. Achema, “Production of agro waste composite ceiling board (a case study of the mechanical properties),” J. Sci. Eng. Res., vol. 4, no. 6, pp. 208–212, 2017.
[59] M. Sarkar, M. Asaduzzaman, A. Das, M. Hannan, and M. Shams, “Mechanical properties and dimensional stability of cement bonded particleboard from rice husk and sawdust,” Bangladesh J. Sci. Ind. Res., vol. 47, no. 3, pp. 273–278, 2012, doi: 10.3329/bjsir.v47i3.13060.
[60] V. I. E. Ajiwe, C. A. Okeke, S. C. Ekwuozor, and I. C. Uba, “Pilot plant for production of ceiling boards from rice husks,” Bioresour. Technol., vol. 66, no. 1, pp. 41–43, 1998, doi: 10.1016/S0960-8524(98)00023-6.
[61] M. A. Nassar, “Composites from sawdust-rice husk fibers,” Polym. – Plast. Technol. Eng., vol. 46, no. 5, pp. 441–446, 2007, doi: 10.1080/03602550600887277.
[62] O. G. Madu, B. N. Nwankwojike, and O. I. Ani, “Optimal Design for Rice Husk-Saw Dust Reinforced Polyester Ceiling Board American Journal of Engineering Research ( AJER ),” Am. J. Eng. Res., vol. 7, no. 6, pp. 11–16, 2018.
[63] R. Mathews, F. & Rawlings, “Polymer Matrix Composite,” in Composite Materials:Engineering and sciences, The Alden Press, Oxford, ISBN 0-412-55960-9, UK, 1994, pp. 168–200.
[64] I. O. Ohijeagbon et al., “Physico-mechanical properties of cement bonded ceiling board developed from teak and African locust bean tree wood residue,” Mater. Today Proc., vol. 44, no. October 2022, pp. 2865–2873, 2021, doi: 10.1016/j.matpr.2020.12.1170.
[65] C. A. Echeverria, W. Handoko, F. Pahlevani, and V. Sahajwalla, “Cascading use of textile waste for the advancement of fibre reinforced composites for building applications,” J. Clean. Prod., vol. 208, pp. 1524–1536, 2019, doi: 10.1016/j.jclepro.2018.10.227.
[66] S. Santhanam, M. Bharani, S. Temesgen, D. Atalie, and G. Ashagre, “Recycling of cotton and polyester fibers to produce nonwoven fabric for functional sound absorption material,” J. Nat. Fibers, vol. 16, no. 2, pp. 300–306, 2019, doi: 10.1080/15440478.2017.1418472.
[67] B. Gedif and D. Atalie, “Recycling of 100% Cotton Fabric Waste to Produce Unsaturated Polyester-Based Composite for False Ceiling Board Application,” Int. J. Polym. Sci., vol. 2022, 2022, doi: 10.1155/2022/2710000.
[68] T. Xiii and F. May, “ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering DEVELOPMENT OF MICROCONTROLLER-BASED SINGLE PHASE,” Int. J. Eng., pp. 237–240, 2015.
[69] A. M. Sature, Pradip, “Mechanical characterization and water absorption studies on jute/hemp reinforced hybrid composites,” Am. J. Mater. Sci., vol. 5, pp. 133–139, 2015.
[70] M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Tensile properties of chemically treated hemp fibres as reinforcement for composites,” Compos. Part B Eng., vol. 53, pp. 362–368, 2013, doi: 10.1016/j.compositesb.2013.05.048.
[71] L. Pil, F. Bensadoun, J. Pariset, and I. Verpoest, “Why are designers fascinated by flax and hemp fibre composites?,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 193–205, 2016, doi: 10.1016/j.compositesa.2015.11.004.
[72] Y. Habibi, L. Heux, M. Mahrouz, and M. R. Vignon, “Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits,” Carbohydr. Polym., vol. 72, no. 1, pp. 102–112, 2008, doi: 10.1016/j.carbpol.2007.07.032.
[73] I. O. Oladele, J. A. Omotoyinbo, and B. O. Adewuyi, “Mechanical and Water Absorption Properties of Sisal-Fibre-Reinforced Polypropylene Composites for Ceiling Applications,” West Indian J. Eng., vol. 37, no. 1, pp. 29–35, 2014.
[74] G. Koronis, A. Silva, and M. Fontul, “Green composites: A review of adequate materials for automotive applications,” Compos. Part B Eng., vol. 44, no. 1, pp. 120–127, 2013, doi: 10.1016/j.compositesb.2012.07.004.
[75] B. F. Yousif and H. Ku, “Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks,” Mater. Des., vol. 36, pp. 847–853, 2012, doi: 10.1016/j.matdes.2011.01.063.
[76] A. Ticoalu, T. Aravinthan, and F. Cardona, “A review of current development in natural fiber composites for structural and infrastructure applications,” South. Reg. Eng. Conf. 2010, SREC 2010 – Inc. 17th Annu. Int. Conf. Mechatronics Mach. Vis. Pract. M2VIP 2010, no. November, pp. 113–117, 2010.
[77] C. Asasutjarit, S. Charoenvai, J. Hirunlabh, and J. Khedari, “Materials and mechanical properties of pretreated coir-based green composites,” Compos. Part B Eng., vol. 40, no. 7, pp. 633–637, 2009, doi: 10.1016/j.compositesb.2009.04.009.
[78] N. Ayrilmis, S. Jarusombuti, V. Fueangvivat, P. Bauchongkol, and R. H. White, “Coir fiber reinforced polypropylene composite panel for automotive interior applications,” Fibers Polym., vol. 12, no. 7, pp. 919–926, 2011, doi: 10.1007/s12221-011-0919-1.
[79] S. Tigabe, D. Atalie, and R. k. Gideon, “Physical Properties Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust,” J. Nat. Fibers, vol. 19, no. 13, pp. 5928–5939, 2022, doi: 10.1080/15440478.2021.1902899.
[80] C. S. B. R. R. Malalli, “Mechanical characterization of natural fiber reinforced polymer composites and their application in Prosthesis: A review,” in International Conference on Materials, Processing & Characterization (13th ICMPC), 2022, vol. 63, no. 6, pp. 3435–3443. doi: https://doi.org/10.1016/j.matpr.2022.04.276.
[81] D. M. B. C. Patel, S. K. Acharya, “Environmental effect of water absorption and flexural strength of red mud filled jute fiberpolymer composite,” Int. J. Eng. Sci. Technol., vol. 4, no. 4, pp. 49–59, 2010, doi: http://dx.doi.org/10.4314/ijest.v4i4.5.
[82] S. Siddika, F. Mansura, and M. Hasan, “Physico-Mechanical Properties of Jute-Coir Fiber Reinforced Hybrid Polypropylene Composites,” vol. 7, no. 1, pp. 60–64, 2013.
[83] S. Dixit and P. Verma, “The Effect of Hybridization on Mechanical Behaviour of Coir / Sisal / Jute Fibres Reinforced Polyester Composite Material,” vol. 2, no. 6, pp. 91–93, 2012.
[84] E. Zini and M. Scandola, “Green composites: An overview,” Polym. Compos., vol. 32, no. 12, pp. 1905–1915, 2011, doi: 10.1002/pc.21224.
[85] K. Ghavami, “Bamboo as reinforcement in structural concrete elements,” Cem. Concr. Compos., vol. 27, no. 6, pp. 637–649, 2005, doi: 10.1016/j.cemconcomp.2004.06.002.
[86] M. Jacob and S. Thomas, “Biofibers and biocomposites,” Carbohydr. Polym, vol. 71. pp. 343–364, 2008.
[87] Lucintel, “XBoards introduces snowboard made from flax fibre composite,” 2012. https://www.lucintel.com/news/xboards_introduces_snowboard_made_from_flax_f%0Aibre_composite.aspx (accessed Sep. 25, 2023).
[88] J. Composites, “Biocomposite snowboard using Biotex flax fabric,” 2012.
[89] Artengo, “Artengo Flaxfiber,” 2011. https://www.artengo.com/EN/tennis-178%0A543753/ (accessed Sep. 25, 2023).
[90] Museeuw, “MF-5.,” 2012. https://en.museeuwbikes.be/bikes/race/mf-5 (accessed Sep. 25, 2023).
[91] H. T, “Sprint to require green certification for all cell phones.,” 2012.
[92] A. Gholampour and T. Ozbakkaloglu, A review of natural fiber composites: properties, modification and processing techniques, characterization, applications, vol. 55, no. 3. Springer US, 2020. doi: 10.1007/s10853-019-03990-y.
[93] H. G. Mohanty AK, Misra M, Drzal TL, Selke SE, Harte BR, Natural Fibers, Biopolymers, and Biocomposites. CRC Press-Taylor & Francis Group, Boca Raton, 2005.
[94] Anonymous, “Bioplastics in automotive applications. Bioplastics Magazine,” 2007. https://bioplastics-cms.de/bioplastics/ (accessed Sep. 25, 2023).
[95] “Mitsubishi Motors develops plant-based green plastic floor mat. Tokyo: Mitsubishi MotorsCo. mitsubishi-motors.com.” https://www.mitsubishimotors.com/en/corporate/pre%0Assrelease/corporate/detail1475.html (accessed Sep. 25, 2023).
[96] P. K. Bajpai, I. Singh, and J. Madaan, “Development and characterization of PLA-based green composites: A review,” J. Thermoplast. Compos. Mater., vol. 27, no. 1, pp. 52–81, 2014, doi: 10.1177/0892705712439571.
[97] Anonymous, “Daimler Chrysler turns to natural fibres,” 2000.
[98] “North America enviromental report, report recycling use.”
[99] W. Dai, N. Kawazoe, X. Lin, J. Dong, and G. Chen, “The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering,” Biomaterials, vol. 31, no. 8, pp. 2141–2152, 2010, doi: 10.1016/j.biomaterials.2009.11.070.
[100] C. T. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, “Clinical transplantation of a tissue-engineered airway,” Lancet, vol. 372, no. 9655, pp. 2023–2030.
Download all article in PDF