ABSTRACT
The simultaneous influences of surface inclination, magnetic field and internal heat generation in porous fins with radiative-convective heat transfer is explored using homotopy perturbation method. The efficacy of the method is displayed through the verification of the results with numerical method using Runge-Kutta. Also, significance of surface inclination, magnetic field, internal heat generation and other parameters on the heat management enhancement of thermal systems using the analytical solutions presented by the method are discussed. The graphical representation of the thermal behaviour of the extended surfaces is presented for pictorial discussion. The results illustrate that the augmentations of the surface inclination, magnetic field, conductive-radiative, conductive-convective and porosity cause the extended surface temperature to reduce as a result of increased rate of heat flow via the passive device. Also, an increase in the internal heat generation causes the fin temperature to fall and the rate of heat transfer from the fin to decrease. It is hoped that the study will assist in proper thermal analysis of fins for effective thermal managements of engineering systems.
References
- Kiwan and M. A. Al-Nimr, Using Porous Fins for Heat Transfer Enhancement, Journal of Heat Transfer, 123 (2000), 790-795
- Gong, Y. Li, Z. Bai, and M. Xu, Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design, Applied Thermal Engineering, 137 (2018), 288-295
- M. Ali, M. J. Ashraf, A. Giovannelli, M. Irfan, T. B. Irshad, H. M. Hamid, et al., Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs, International Journal of Heat and Mass Transfer, 123 (2018), 272-284
- O. Seyfolah Saedodin, Temperature distribution in porous fins in natural convection condition, Journal of American Science, 7, 2011.
- A. Oguntala, R. A. Abd-Alhameed, G. M. Sobamowo, and N. Eya, Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component, Thermal Science and Engineering Progress, 6 (2018), 177-185
- G. Sobamowo, O. M. Kamiyo and O. A. Adeleye. Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Thermal Science and Engineering Progress, 1 (2017), 39-52
- Mosayebidorcheh, M. Farzinpoor, and D. D. Ganji, Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles, Energy Conversion and Management, 86 (2014), 365-370
- -M. Kim and I. Mudawar, Analytical heat diffusion models for different micro-channel heat sink cross-sectional geometries, International Journal of Heat and Mass Transfer, 53 (2010), 4002-4016
- Moradi, T. Hayat, and A. Alsaedi, Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM, Energy Conversion and Management, 77(2014), 70-77.
- Oguntala, R. Abd-Alhameed, and G. Sobamowo, On the effect of magnetic field on thermal performance of convective-radiative fin with temperature-dependent thermal conductivity, Karbala International Journal of Modern Science, 4 (2018), 1-11.
- M. Wan, G. Q. Guo, K. L. Su, Z. K. Tu, and W. Liu, Experimental analysis of flow and heat transfer in a miniature porous heat sink for high heat flux application, International Journal of Heat and Mass Transfer, 55 (2012), 4437-4441
- Naphon, S. Klangchart, and S. Wongwises, Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU, International Communications in Heat and Mass Transfer, 36 (2009), 834-840
- Oguntala, R. Abd-Alhameed, G. Sobamowo, and I. Danjuma, Performance, Thermal Stability and Optimum Design Analyses of Rectangular Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation, Journal of Computational Applied Mechanics, 49 (2018), 37-43
- G. Sobamowo, Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual, Applied Thermal Engineering, 99 (2016), 1316-1330
- R. Seyf and M. Feizbakhshi, Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks, International Journal of Thermal Sciences, 58 (2012), 168-179.
- A. Fazeli, S. M. Hosseini Hashemi, H. Zirakzadeh, and M. Ashjaee, Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid, Superlattices and Microstructures, 1 (2012), 247-264.
- Oguntala, R. Abd-Alhameed, Z. Oba Mustapha, and E. Nnabuike, “Analysis of Flow of Nanofluid through a Porous Channel with Expanding or Contracting Walls using Chebychev Spectral Collocation Method, Journal of Computational Applied Mechanics, 48 (2017), 225-232.
- Kundu and D. Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, International Journal of Refrigeration, 34 (2011), 337-352
- Khani, M. A. Raji, and H. H. Nejad, Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 3327-3338
- Rostamiyan, Ganji, DD, Petroudi RI, Nejad KM, Analytical investigation of nonlinear model arising in heat transfer through the porous fin, Thermal Science, 18 (2014), 409-417
- Das and B. Kundu, Prediction of Heat Generation in a Porous Fin from Surface Temperature, Journal of Thermophysics and Heat Transfer, 31 (2017), 781-790
- Oguntala, G. Sobamowo, Y. Ahmed, and R. Abd-Alhameed, “Application of Approximate Analytical Technique Using the Homotopy Perturbation Method to Study the Inclination Effect on the Thermal Behavior of Porous Fin Heat Sink, Mathematical and Computational Applications, 23 (2018), 62
- A. Oguntala and R. A. Abd-Alhameed, Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation, Journal of Applied and Computational Mechanics, 3 (2017), 185-191
- Kiwan, Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46 (2007a)., 1046-1055
- Kiwan. Thermal analysis of natural convection porous fins. Tran. Porous Media 67 (2007b), 17-29
- Kiwan, O. Zeitoun, Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow 18 (5) (2008), 618-634
- S. Gorla, A. Y. Bakier. Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer 38 (2011), 638-645
- Kundu, D. Bhanji. An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refrigeration 34 (2011), 337-352
- Kundu, D. Bhanja, K. S. Lee. A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transfer 55 (25-26) (2012) 7611-7622
- Taklifi, C. Aghanajafi, H. Akrami. The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp Porous Med. 85 (2010) 215–31
- G. Sobamowo, K.C. Alaribe, A.O. Adeleye, A. A. Yinusa and O. A. Adedibu. A Study on the Impact of Lorentz Force on the Thermal Behaviour of a Convective-Radiative Porous Fin using Differential Transformation Method. International Journal of Mechanical Dynamics & Analysis. 6(1) (2020), 45-59
- J.Gireesha & G.Sowmya(2022)Heat transfer analysis of an inclined porous fin using Differential Transform Method,International Journal of Ambient Energy, 43: 1, 3189-3195
- H. Jasim and M. S. Söylemez The Effects of the Perforation Shapes, Sizes, Numbers and Inclination Angles on The Thermal Performance of a Perforated Pin Fin. Turkish Journal of Science & Technology. 13(2) (2018), 1-13, 2018
- H. Jasim and M. S. Söylemez. Optimization of a rectangular pin fin using rectangular perforations with different inclination angles, International Journal of Heat and Technology 35(4), (2017), 969-977
- A. Oguntala, M. G. Sobamowo, A. A. Yinusa Ahmed and R. Abd-Alhameed Application of Approximate Analytical Technique using the Homotopy Perturbation Method to Study the Inclination Effect on the Thermal Behavior of Porous Fin Heat Sink. Math. Comput. Appl. 2018, 23, 62
- A. Oguntala, M. G. Sobamowo, Ahmed and R. Abd-Alhameed. Numerical Investigation of Inclination on the Thermal Performance of Porous Fin Heatsink using Pseudospectral Collocation Method. Karbala International Journal of Modern Science 5(1) (2009), 19-26
- A. Oguntala, M. G. Sobamowo and R. Abd-Alhameed. Numerical analysis of transient response of convective-radiative cooling fin with convective tip under magnetic field for reliable thermal management of electronic systems. Thermal Science and Engineering Progress, 9 (2019), 289-298
- A. Oguntala, M. G. Sobamowo and R. Abd-Alhameed. A new hybrid approach for transient heat transfer analysis of convective-radiative fin of functionally graded material under Lorentz force. Thermal Science and Engineering Progress, 16 (2020), 100467
- R. Amirkolaei, D.D. Ganji, and H. Salarian. Determination of temperature distribution for porous fin which is exposed to Uniform Magnetic Field to a vertical isothermal surface by Homotopy Analysis Method and Collocation Method. Indian J. Sci. Res. 1(2) (2014), 215-222
Download all article in PDF



