ABSTRACT
In the present paper, the passive layers’ chemical compositions of AISI 316L austenitic stainless
steel samples after three treatments, such as mechanical/abrasive polishing (MP), standard
electropolishing (EP) and magnetoelectropolishing (MEP) are displayed. For the surface studies after
each treatment, XPS analysis was performed. It has been noted that after MP treatment the Cr/Fe ratio
in the passive layer is the lowest and equals to about 1, whereas after the MEP it is close to 3.
Additionally, it has to be reported that the passive layers after MP consist mainly of Cr2O3 and Fe2O3,
after a standard EP treatment – of CrOOH and FeOOH, and after MEP – of Cr(OH)3 and FeOOH
compounds. Concerning the surface layer compositions, in the passive layer formed after MP the
detected iron consisted partly of Fe0 (46.5 at %) and partly of iron compounds Fe2+ and Fe3+ (53.5 at
%), whereas the detected chromium consisted of Cr0 (16.5 at %) and mostly of chromium compounds
Cr3+ (80.8 at%), with a small amount of Cr6+ (2.7 at %). In case of the nanolayer after EP treatment,
the detected iron consisted of Fe0 (39.5 at %) and iron compounds Fe2+ and Fe3+ (60.5 at %), whereas
the detected chromium consisted in a small amount of Cr0 (6.6 at %), and mostly chromium
compounds Cr3+ (83.8 at %) with some Cr6+ (9.6 at %). The XPS analysis of nanolayer formed on
AISI 316L after MEP indicates that the detected iron consisted partly of Fe0 (27.1 at %) and mostly of
iron compounds Fe2+ and Fe3+ (72.9 at %) whereas the detected chromium contained Cr0
(18 at %) and chromium compounds of Cr3+ (76 at %) and Cr6+ (6 at %).
References
[1] Kułakowska A, Kukiełka L, Numerical analysis and experimental researches of
burnishing rolling process with taking into account deviations in the surface asperities
outline after previous treatment. Steel Research International, 2 (2008) 42-48.
[2] Kułakowska A, Problems of surface preparation under Burnishing rolling in aspect of
product quality. Steel Research International, 81/9 (2010) 218-221.
[3] Kułakowska A, Experimental Researches of Burnishing Rolling Process of Regular
Surface Asperities Prepared in Turning Process. Steel Research International, Special
Edition: 14th International Conference on Metal Forming (2012) 127-131.
[4] Kukiełka L, Kukiełka K, Kułakowska A, Patyk R, Malag L, Bohdal L, Incremental
Modelling and Numerical Solution of the Contact Problem between Movable Elastic
and Elastic/Visco-Plastic Bodies and Application in the Technological Processes.
Applied Mechanics and Materials Novel Trends in Production Devices and Systems,
Editors: Karol Velíńek, Peter Końťál and Milan Nad, 2014, USA-Slovakia, 2014, pp.
159-165. ISSN 1662-7482.
[5] Kukiełka K, Kukiełka L, Bohdal Ł, Kułakowska A, Maląg L, Patyk R, 3D Numerical
Analysis the State of Elastic/Visco-Plastic Strain in the External Round Thread Rolled
on Cold. Applied Mechanics and Materials Novel Trends in Production Devices and
Systems, Editors: Karol Velíńek, Peter Końťál and Milan Nad, 2014, USA-SLOVAKIA,
pp. 436-441. ISSN 1662-7482.
[6] Kukiełka L, Kułakowska A, Patyk R, Numerical modeling and simulation of the
movable contact tool-worpiece and application in technological processes. Journal of
Systemics, Cybernetics and Informatics, Orlando, Floryda (2009) 57-62.
[7] Rokosz K, Hryniewicz T, Malorny W, Valiček J, Harničárová M, ANSYS analysis of
stress and strain after cones plastic deformation. Technical Gazette, 22(2) (2015) 503-508.
[8] Kułakowska A, Bohdal Ł, Kukiełka L, Kukiełka K, Maląg L, Patyk R, Possibility of
Steering of Product Surface Layers Properties in Burnishing Rolling Process. Applied
Mechanics and Materials, Novel Trends in Production Devices and Systems, Editors:
Karol Velíńek, Peter Końťál and Milan Nad, 2014, USA-SLOVAKIA, ISSN 1662-7482.
[9] Kułakowska A, Bohdal Ł, Patyk R, Application of burnishing process in creating
environmental product. Annual Set The Environment Protection, 16 (2014), ISSN 1506-218X.
[10] Patyk R, Kułakowska A, Bohdal Ł, Environmental, Economic and Exploitation Aspects
of the Use of Burnishing Rolling Treatments. Annual Set The Environment Protection,
16 (2014), ISSN 1506-218X.
[11] Bohdal Ł, Kułakowska A, Patyk R, Analysis of slitting of aluminium body panels in the
aspect of scrap reduction. Annual Set The Environment Protection, 16 (2014), ISSN
1506-218X.
[12] Simka W, Sadowski A, Warczak M, Iwaniak A, Dercz G, Michalska J, Maciej A,
Modification of titanium oxide layer by calcium and phosphorus. Electrochemical Acta,
56(24) (2011) 8962-8968.
[13] Jin F Y, Tong H H, Shen L R, Wang K, Chu P K, Micro-structural and Dielectric
Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc
Discharge Oxidization. Materials Chemistry and Physics, 100(1) (2006) 31-33.
[14] Chung C J, Su R T, Chu H J, Chen H T, Tsou H K, He J L, Plasma electrolytic
oxidation of titanium and improvement in osseointegration. Journal of Biomedical
Materials Research. B – Applied Biomaterials, 101(6) (2013) 1023-1030.
[15] Sowa M, Kazek-Kęsik A, Socha R P, Dercz G, Michalska J, Simka W, Modification of
tantalum surface via plasma electrolytic oxidation in silicate solutions. Electrochimica
Acta, 114 (2013) 627-636.
[16] Sowa M, Kazek-Kęsik A, Krząkała A, Socha R P, Dercz G, Michalska J, Simka W,
Modification of niobium surfaces using plasma electrolytic oxidation in silicate
solutions. Journal of Solid State Electrochemistry, 18(1) (2014) 3129-3142.
[17] Simka W, Sowa M, Socha R P, Maciej A, Michalska J, Anodic oxidation of zirconium
in silicate solutions. Electrochemical Acta, 104 (2013) 518-525.
[18] Kazek-Kęsik A, Krok-Borkowicz M, Jakobik-Kolon A, Pamuła E, Simka W,
Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation.
Part I. Surface and Coatings Technology, 276 (2015) 59-69.
[19] Kazek-Kęsik A, Krok-Borkowicz M, Jakóbik-Kolon A, Pamuła E, Simka W,
Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation.
Part II. Surface and Coatings Technology, 276 (2015) 23-30.
[20] Simka W, Nawrat G, Chlode J, Maciej A, Winiarski A, Szade J, Radwanski K,
Gazdowicz J, Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysł
Chemiczny, 90(1) (2011) 84-90.
[21] Walsh F C, Low C T J, Wood R J K, Stevens K T, Archer J, Poeton A R, Ryder Y,
Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight
metal (Al, Mg, Ti) alloys. Transactions of The Institute of Metal Finishing, 87(3) (2009)
122-135.
[22] Yerokhin A L, Nie X, Leyland A, Matthews A, Characterisation of oxide films
produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surface and Coatings
Technology, 130(2-3) (2000) 195-206.
[23] Rokosz K, Hryniewicz T, Plasma Electrolytic Oxidation as a modern method to form
porous coatings enriched in phosphorus and copper on biomaterials. World Scientific
News, 35 (2016) 44-61.
[24] Rokosz K, Hryniewicz T, Dudek Ł, Malorny W, SEM and EDS analysis of Nitinol
surfaces treated by Plasma Electrolytic Oxidation. Advances in Materials Science, 15(3)
(2015) 41-47.
[25] Rokosz K, Hryniewicz T, Characteristics of porous and biocompatible coatings
obtained on Niobium and Titanium-Niobium-Zirconium (TNZ) alloy by Plasma
Electrolytic Oxidation, Mechanik, 12 (2015) 15-18;
DOI: 10.17814/mechanic.2015.12.530
[26] Rokosz K, Hryniewicz T, Raaen S, Development of plasma electrolytic oxidation for
improved Ti6Al4V biomaterial surface properties. The International Journal of
Advanced Manufacturing Technology, 2015; DOI: 10.1007/s00170-015-8086-y
[27] Hryniewicz T, Physico-chemical and technological fundamentals of electropolishing
steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali),
1989, Monograph no. 26, Koszalin University of Technology Publishing; 161 pages.
[28] Hryniewicz T, On the surface treatment of metallic biomaterials (Wstęp do obróbki
powierzchniowej biomateriałów metalowych), 2007, Koszalin University of
Technology Publishing; 155 pages.
[29] Rokosz K, Electrochemical Polishing in a magnetic field (Polerowanie
elektrochemiczne w polu magnetycznym), 2012, Koszalin University of Technology
Publishing; 211 pages.
[30] Hryniewicz T, Rokicki R, Rokosz K, Co-Cr alloy corrosion behaviour after
electropolishing and “magnetoelectropolishing” treatments. Surface and Coatings
Technology, 62(17-18) (2008) 3073-3076.
[31] Hryniewicz T, Rokosz K, Analysis of XPS results of AISI 316L SS electropolished and
magnetoelectropolished at varying conditions. Surface and Coatings Technology,
204(16-17) (2010) 2583-2592.
[32] Rokicki R, Haider W, Hryniewicz T, Influence of sodium hypochlorite treatment of
electropolished and magnetoelectropolished nitinol surfaces on adhesion and
proliferation of MC3T3 pre-osteoblast cells. Journal of Materials Science: Materials in
Medicine, 23(2) (2012) 2127-2139.
[33] Hryniewicz T, Concept of microsmoothing in the electropolishing. Surface and
Coatings Technology, 64(2) (1994) 75-80.
[34] Rokicki R, Hryniewicz T, Enhanced oxidation-dissolution theory of electropolishing.
Transactions of The Institute of Metal Finishing, 90(4) (2012) 188-196.
[35] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, XPS Analysis of AISI 304L
Stainless Steel Surface after Electropolishing. Advances in Materials Science, 15(1)
(2015) 21-29; DOI: 10.1515/adms-2015-0004
[36] Hryniewicz T, Rokicki R, Rokosz K, Magnetoelectropolishing for metal surface
modification. Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332.
[37] Hryniewicz T, Rokicki R, Rokosz K, Corrosion and surface characterization of
titanium biomaterial after magnetoelectropolishing. Surface and Coatings Technology,
203(9) (2008) 1508-1515.
[38] Hryniewicz T Rokosz K, Polarization characteristics of magnetoelectropolishing
stainless steels. Materials Chemistry and Physics, 122(1) (2010) 169-174.
[39] Rokosz K, Hryniewicz T, Raaen S, Characterization of passive film formed on AISI
316L stainless steel after magnetoelectropolishing in a broad range of polarization
parameters. Journal of Iron and Steel Research, 83(9) (2012) 910-918.
[40] Hryniewicz T, Rokosz K, Investigation of selected surface properties of AISI 316L SS
after magnetoelectropolishing. Materials Chemistry and Physics, 123(1) (2010) 47-55.
[41] Hryniewicz T, Rokosz K, Corrosion resistance of magnetoelectropolished AISI 316L
SS biomaterial. Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64.
[42] Hryniewicz T, Rokosz K, Valiček J, Rokicki R, Effect of magnetoelectropolishing on
nanohardness and Young’s modulus of titanium biomaterial. Materials Letters, 83
(2012) 69-72.
[43] Hryniewicz T, Rokosz K, Rokicki R, Prima F, Nanoindentation and XPS Studies of
Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8
(2015) 205-215.
[44] Hryniewicz T, Rokicki R, Rokosz K, Magnetoelectropolished titanium biomaterial, in
Biomaterials Science and Engineering, Chapter 11, ed. by Rosario Pignatello, 2011, pp.
227-248, available at: www.intechweb.org/;
wwwintechopen.com/articles/show/title/magnetoelectropolished-titanium-biomaterial.
[45] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, Comparative XPS analysis of
passive layers composition formed on AISI 304 L SS after standard and high-current
density electropolishing. Surface and Interface Analysis, 47(1) (2015) 87-92.
[46] Rokosz K, Hryniewicz T, Valiček J, Harničarova M, Vylezik M, Nanoindentation
measurements of AISI 316L biomaterial samples after annual immersion in Ringer’s
solution followed by electrochemical polishing in a magnetic field. PAK (Measurement
Automation and Monitoring), 58(5) (2012) 460-463.
[47] Hryniewicz T, Rokosz K, Filippi M, Biomaterial studies on AISI 316L stainless steel
after Magnetoelectropolishing. Materials, 2(1) (2009) 129-145.
[48] Hryniewicz T, Rokosz K, Rokicki R, Electrochemical and XPS studies of AISI 316L
stainless steel after electropolishing in a magnetic field. Corrosion Science, 50(9)
(2008) 2676-2681.
[49] Hryniewicz T, Rokosz K, Rokicki R, Magnetic fields for electropolishing improvement:
materials and systems. International Letters of Chemistry, Physics and Astronomy, 4
(2014) 98-108.
[50] Hryniewicz T, Rokosz K, Highlights in magnetoelectropolishing. Frontiers in
Materials: Corrosion Research, 1(3) (2014) 1-7 (Inaugural Article);
http://dx.doi.org/10.3389/fmats.2014.00003
[51] Rokosz K, Lahtinen J, Hryniewicz T, Rzadkiewicz S, XPS depth profiling analysis of
passive surface layers formed on austenitic AISI 304L and AISI 316L SS after highcurrent-density electropolishing. Surface and Coatings Technology, 276 (2015)516–520.
[52] Rokosz K, Hryniewicz T, Lukeń J, Ńepitka J, Nanoindentation studies and modeling of
surface layers on austenitic stainless steels by extreme electrochemical treatments,
Surface and Interface Analysis, 2015, (wileyonlinelibrary.com) online; DOI
10.1002/sia.5758 (5 pages).
[53] Rokosz K, Hryniewicz T, Rzadkiewicz S, Raaen S, High-Current-Density
Electropolishing (HDEP) of AISI 316L SS (EN 1.4404) Stainless Steel. Tehnicki
Vjesnik-Technical Gazette, 22(2) (2015) 415-424; DOI: 10.17559/TV-20140722110711
[54] Rokosz K, Hryniewicz T, Rzadkiewicz S, XPS study of surface layer formed on AISI
316L SS after high-current-density electropolishing. Solid State Phenomena, 227 (2015)
155-158; DOI: 10.4028/www.scientific.net/SSP.227.167
[55] Wagner C D, Riggs W M, Davis L E, Moueler J E, Mullenberg G E (Eds.), Handbook
of X-Ray Photoelectron, Spectroscopy, Perkin-Elmer, Minnesota, 1979.
[56] Crist B V, PDF Handbook of The Elements and Native Oxides – The Elements and
Native Oxides, 2005.
[57] Wang Y, Asunskis D J, Sherwood P M A, Iron (II) Phosphate Fe3(PO4)2 by XPS.
Surface Science Spectra, 9(1-4) (2002) 91-98.
[58] Wang Y, Sherwood P M A, Iron (III) Phosphate (FePO4) by XPS. Surface Science
Spectra, 9(1-4) (2002) 99-105.
[59] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart, R, St. C,
Resolving surface chemical states in XPS analysis of first row transition metals, oxides
and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257 (2011) 2717-2730.
[60] Grosvenor A P, Kobe B A, Biesinger M C, McIntyre N S, Investigation of multiplet
splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface
Analysis, 36(12) (2004) 1564-1574.
[61] Biesinger M C, Brown C, Mycroft J R, Davidson R D, McIntyre N S, X-ray
photoelectron spectroscopy studies of chromium compounds. Surface and Interface
Analysis, 36(12) (2004) 1550-1563.
[62] http://www.casaxps.com
( Received 15 January 2016; accepted 28 January 2016
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.