ABSTRACT
Let G = (V, E) be a simple graph. Let e E(G). The strong independent edge saturation number of an edge e is defined as (e) = max { :S is a maximal strong independent edge dominating set of G containing e}. The Strong independent edge saturation number of the graph G is defined as (G) = min . In this paper the strong independent edge saturation number of some standard graphs and some corona related graphs are determined.
References
- Acharya B. D., The strong domination number of a graph and related concepts, Math. Phys. Sci 14 (5) (1980) 471-475
- Allan R. B. and Laskar R., On domination and independent domination numbers of a graph, Discrete Math, 23 (1978, 73-76
- Arumugam S. and Kala R., Domsaturation number of a graph, Indian J. Pure Apple. Math. 33 (11) (2002) 1671-1676
- Arumugam S. & Subramanian M., Independence saturation and extended domination chain in graphs, AKCE J. Graphs. Combin. 4 (2) (2007) 59-69
- Arumugam S. and Velammal S., Edge domination in graphs, Taiwaness Journal of Mathematics, 6, No. 2, (1998) 173-179
- Devadhas Nidha, Murugan Kala , A Note on edge – domsaturation number of a graph, Open Journal of Discrete Mathematics, 2 (2012) 109-113
- Harary F., (1969). Graph Theory, Adison Wesley, Reading Mass.
- Haynes T.W., Hedetniemi, Peter S.T., Slater J., (Eds), (1998). Domination in Graphs: Advanced Topics, Marcel Decker, Inc., New York.
- Haynes T.W., Hedetniemi, Peter S.T., Slater J., (Eds), (1998). Fundamental of Domination in Graphs, Marcel Decker Inc., New York.
- Kamath S.S., Bhat R.S., Strong (weak) independent sets and vertex coverings of a graph, Discrete Mathematics, 307 (2007) 1136-1145
- Kulli V.R., (2010). Theory of Domination in Graphs (Vishwa International Publications, Gulbarga, India.
- Sampathkumar E., and Pushpalatha, Strong (weak) Domination and Domination Balance in a graph, Discrete Mathematics, 161 (1996) 235-242
- Yannakakis M., and Gavril F., Edge Dominating sets in graphs, SIAM J. APPL. Math. 38 (1980) 364-372
Download all article in PDF