ABSTRACT
The optimally thorium-doped Pb0.9Th0.1ZrO3 was selected for studying thorium doping effect on
the structural parameters of lead zirconate crystal. The investigations were made on the low
concentrations range of thorium doping 0.0 ≤ x ≤ 0.25 mole. The present investigations are concerned
by confirming that thorium dopings play an important role as stabilizing agent inside internal structure
of crystal lattice of Pb1-xThxZrO3 where x = 0.1 mole. XRD-measurements indicated that Thorium
dopant substitutes successfully on the A-sites of lead zirconate without damaging the main crystal
structure at x = 0.1 mole. Visualization and theoretical investigations were concerned by matching and
comparison of bond distances, torsions on angles of investigated compound to clarify success of
thorium doping on the perovskite structure.
References
[1] S.E. Park, K. Markowski, S. Yoshikawa and L.E. Cross, J. Am. Ceram. Soc. 80 (1997),
407.
[2] J. Parui and S.B. Krupanidhi, J. Appl. Phys. 100 (2006), pp. 044102.
[3] Z.K. Xu, J.W. Zhai and W.H. Chan, Appl. Phys. Lett. 88 (2006) 132908.
[4] G.R. Love, J. Am. Ceram. Soc. 73 (1990) 323.
[5] S. Chattopadhyay, P. Ayyub, V.R. Palkar, M.S. Multani, S.P. Pai, S.C. Purandare and
R. Pinto, J. Appl. Phys. 83 (1998) 7808.
[6] S.S.N. Bharahwaja and S.B. Krupanidhi, Thin Solid Films 423 (2003) 88.
[7] B.M. Xu, Y.H. Ye and L.E. Cross, J. Appl. Phys. 87 (2000) 2507.
[8] J.W. Zhai, M.H. Cheung, Z.K. Xu and X. Li, Appl. Phys. Lett. 81 (2002) 3621.
[9] H.W. Chen, C.R. Yang, J.H. Zhang, Y.F. Pei and Z. Zhao, J. Alloys Compd. 486 (2009) 615.
[10] X.H. Hao and J.W. Zhai, J. Cryst. Growth 310 (2008) 1137.
[11] X.H. Hao, J.W. Zhai and X. Yao, J. Cryst. Growth 311 (2008) 90.
[12] L.B. Kong, J. Ma, W. Zhu and O.K. Tan, J. Alloys Compd. 322 (2001) 290-297.
[13] P. Charoonsuk, S. Wirunchit, R. Muanghlua, S. Niemcharoen, B. Boonchom and N.
Vittayakorn, J. Alloys Compd. 3 (2010) 23-28.
[14] X.H. Hao, Z.Q. Zhang, J. Zhou, S.L. An and J.W. Zhai, J. Alloys Compd. 501 (2010) 358-361.
[15] R. Smoluchowski and N. Kurti “Solid State Physics-vol.5: Structure, Properties,
&Preparation of Perovskite-Type Compounds”, Pergamon Press Inc., (1969) 3-11.
[16] A. Wold and K. Dwigh “Solid State Chemistry” Chapman and Hall Inc., (1993) 127, 136, 137.
[17] J.F. Scott, C.A. Araujo, Science 246 (1989) 1400.
[18] Y.H. Xu, Ferroelectric Materials and Their Applications, North-Holland, Amsterdam,
(1991) 206.
[19] R. Watton, P. Manning, Proc. SPIE 3436, (1998) 541.
[20] V.E. Wood, J.R. Bush, S.D. Ramamurthi, S.L. Swartz, J. Appl. Phys. 71 (1992) 4557.
[21] K.D. Preston, G.H. Haertling, Appl. Phys. Lett. 60 (1992) 2831.
[22] W.G. Liu, J.S. Ko, W.G. Zhu, Infrared Phys. Technol. 41 (2000) 169.
[23] D. Dimos, C.H. Muller, Annu. Rev. Mater. Sci., 28 (1998) 397.
[24] D.L. Polla, Microelectron. Eng., 29 (1995) 51.
[25] Y. Nemirovsky, A. Nemirovsky, P. Muralt, N. Setter, Sensors Actuators A 56, (1996)
239.
[26] G. Heartling, J. Am. Ceram. Soc., 82 (1999) 797.
[27] K. Singh, Ferroelectrics, 94 (1989) 433.
[28] M.T. Lanagan, J.H. Kim, S. Jang, and R.E. Newnham, J. Am. Ceram. Soc. 71 (1988)111.
[29] K. Wakino, M.Murata, and H. Tamura, J. Am. Ceram. Soc., 69 (1986) 34-37.
[30] W.N. Lawless, Phys. Rev. B, 30 (1984) 6555-6559.
[31] D.M. Ibrahim and H.W. Henniek, Trans. J. Br. Ceram. Soc., 80 (1981) 18-22.
[32] Y.S. Rao, C.S. Sunandana, J. Mater. Sci. Lett., 11 (1992) 595-597.
[33] E.E. Oren, E. Taspinar and A.C. Tas, J. Am. Ceram. Soc., 80(10) (1997) 2714-2716.
[34] J. Fang, J. Wang, S. Ng, L. M.Gan, C. Quek and C.H. Chew, Mater. Lett. 36 (1998)179-185.
[35] B. Matthes, G. Tomandl and G. Werner, J. Eu. Ceram. Soc. 19, 6-7, (1999)1387-1389.
[36] L.B. Kong, J. Ma, W. Zhu and O.K. Tan, Materials Letters, 49(2) (2001) 96-101.
[37] S.S.N. Bharadwaja, S.B. Krupanidhi, Thin Solid Films 423 (2003) 88-96.
[38] Z.G. Hu, F.W. Shi, T. Lin, Z.M. Huang, G.S. Wang, Y.N. Wu, J.H. Chu, Physics
Letters A, 230 (2004) 478-486.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.