ABSTRACT
In this paper, we studied the behavior of relativistic objects with charged anisotropic matter
distribution within the framework of MIT-Bag Model considering Tolman VII form for the
gravitational potential Z. A physical analysis of electromagnetic field indicates that is regular in the
origin and well behaved. In the obtained solution there is a singularity in the charge density. We show
as the presence of an electrical field causes a modification in the radial pressure, the tangential
pressure, the anisotropic factor and the mass of the stellar object.
References
[1] Kuhfitting, P.K.(2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor.
Phys., 5, 365-367.
[2] Bicak, J.(2006). Einstein equations: exact solutions, Encyclopedia of Mathematical
Physics, 2, 165-173.
[3] Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General
Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
[4] Komathiraj, K., and Maharaj, S.D. (2008). Classes of exact Einstein-Maxwell solutions,
Gen. Rel. Grav., 39, 2079-2093.
[5] Sharma, R., Mukherjee, S and Maharaj, S.D.(2001). General solution for a class of
static charged stars, Gen. Rel. Grav., 33, 999-110.
[6] Bowers, R. L., Liang, E. P. T.: Astrophys. J., 188, 657 (1974).
[7] Cosenza, M., Herrera, L., Esculpi, M. and Witten, L.(1981), J. Math. Phys., 22(1), 118.
[8] Gokhroo, M.K., and Mehra. A.L. (1994). Anisotropic spheres with variable energy
density in general relativity, Gen. Relat. Grav., 26(1), 75-84.
[9] Sokolov. A.I. (1980), Sov. Phys. JETP., 52, 575
[10] Usov, V. V., Phys. Rev. D, 70, 067301 (2004).
[11] Komathiraj, K., and Maharaj, S.D.(2007). Analytical models for quark stars, Int. J.
Mod. Phys., D16, pp. 1803-1811.
[12] Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas
de quarks, Revista Integración, 27, 125-133.
[13] Malaver, M. AASCIT Communications, 1,48-51 (2014).
[14] Thirukkanesh, S., and Maharaj, S.D. (2008). Charged anisotropic matter with
linearequation of state, Class. Quantum Gravity, 25, 235001.
[15] Maharaj, S.D., Sunzu, J.M. and Ray, S. (2014). Eur. Phys. J. Plus., 129, 3.
[16] Thirukkanesh, S., and Ragel, F.C. (2013). A class of exact strange quark star model,
PRAMANA – Journal of physics, 81(2), 275-286.
[17] Sunzu, J.M, Maharaj, S.D and Ray, S.(2014). Astrophysics. Space. Sci. 354, 517-524.
[18] Feroze, T.. and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation
of state, Gen. Rel. Grav., 43, 1025-1035.
[19] Feroze, T., Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations
with a quadratic equation of state, Journal of the Korean Physical Society, 65(6), 944-947.
[20] Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State,
Frontiers of Mathematics and Its Applications, 1(1), 9-15.
[21] Malaver, M.(2015). Relativistic Modeling of Quark Stars with Tolman IV Type
Potential, International Journal of Modern Physics and Application, 2(1), 1-6.
[22] Takisa, P.M., and Maharaj, S.D. (2013). Some charged polytropic models, Gen. Rel.
Grav., 45, 1951-1969.
[23] Thirukkanesh, S., and Ragel, F.C. (2012). Exact anisotropic sphere with
polytropicequation of state, PRAMANA – Journal of physics, 78(5), 687-696.
[24] Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals
Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46.
[25] Malaver, M. (2013). Regular model for a quark star with Van der Waals modified
equation of state, World Applied Programming. 3, 309-313.
[26] Thirukkanesh, S., and Ragel, F.C. (2014). Strange star model with Tolmann IV type
potential, Astrophysics and Space Science, 352(2), 743-749.
[27] Bhar, P., Murad, M.H. and Pant, N. (2015). Relativistic anisotropic stellar models with
Tolman VII spacetime, Astrophysics and Space Science, 359(13). DOI:
10.1007/s10509-015-2462-9.
[28] Mak, M.K., and Harko, T. (2004). Quark stars admitting a one-parameter group of
conformal motions, Int. J. Mod. Phys, D13, 149-156.
[29] Durgapal, M.C., and Bannerji, R. (1983). New analytical stellar model in general
relativity, Phys. Rev. D27, 328-331.
[30] Tolman, R.C. (1939). Static Solutions of Einstein’s Field Equations for Spheres of Fluid,
Phys. Rev., 55, 364-373.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.