ABSTRACT
The synthesized Ni-alloy was prepared via conventional casting technique under vacuum and
highly superheated treatment route. The casting parameters such as solidification cooling rate (SCR)
was monitoring by both of AFM and SEM .Micro-structural investigations within different spots in the
same sample indicated that γ matrix is the domain phase besides minor phases as MC carbides, σ
phase and η phase which was observed to solidify in two forms as plate-like and blocky shape. The
volume fraction (Vf) of σ and η phases was increased as the solidification cooling rate decreases. 3Dmicrostructural imaging map of the Ni-based super-alloy was constructed depending upon AFM-data
evaluating that the morphology of the alloy-surface is a function of casting parameters .Furthermore
raman spectra of highly superheated casted Ni-based super-alloy was performed to confirm existence
of different phases recorded via SEM and EDX-elemental analysis with their corresponding different
vibrational modes such as Ni-O vibrating modes in the region 360-510 cm-1
and Mo-O vibrating mode
which lies at 1005 cm-1
.
References
[1] B. Gyu Choi, In Soo Kim, Doo Hyun Kim, Chang Young Jo, Materials Science and
Engineering A 478 (2008) 329.
[2] Seyed Abdolkarim Sajjadi, Said Nategh, Roderick I.L. Guthrie, Materials Science and
Engineering A 325 (2002) 484.
[3] C.T. Liua, J. Ma, X.F. Sun, Journal of Alloys and Compounds 491 (2010) 522.
[4] F. Long, Y.S. Yoo, C.Y. Jo, S.M. Seo, Y.S. Song, T. Jin, Z.Q. Hu, Materials Science and
Engineering A 527 (2009) 361.
[5] S.A. SAjjadi, S.M. Zebarjad, R.I.L. Guthrie, M. Isac, Materials Processing Technology,
175 (2006) 376.
[6] M. Pouranvari, A. Ekrami, A.H. Kokabi, Alloys and Compounds 461 (2008) 641.
[7] Alain Jacques, Frederic Diologent, Pierre Caron, Pierre Bastie, Materials Science and
Engineering A, 484 (2008) 568.
[8] Robert A. Kupkovits, Daniel J. Smith, Richard W. Neu, Procedia Engineering 2 (2010)
687.
[9] M. Pouranvari, A. Ekrami, A.H. Kokabi, Materials Science and Engineering A, 490
(2008) 229.
[10] Huang Xuebing, Kang Yan, Zhou Huihua, Zhang Yun, Hu Zhuangqi, Materials Letters,
36 (1998) 210.
[11] Zhaokuang Chu, Jinjiang Yu, Xiaofeng Sun, Hengrong Guan, Zhuangqi Hu, Materials
Science and Engineering A, 527 (2010) 3010.
[12] G.K. Bouse, in: R.D. Kissinger, D. J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M.
Pollock (Eds), Superalloys 1996, The Minerals, Metals and Materials Society, Warrendale,
PA, USA, 1996, 163-172.
[13] W. R. Sun, J.H. Lee, S.M. Seo, S.J. Choe, Z.Q. Hu, Mater. Sci. Technol. 15 (1999) 1221.
[14] B.G. Choi, I.S. Kim, D.H. Kim, C.Y. Jo, Mater. Sci. Eng. A, 478 (2008) 329.
[15] S.M. Seo, I.S. Kim, J.H. Lee, C.Y. Jo, H. Miyahara and K. Ogi, Metall. Mater. Trans A,
38 (2007) 883.
[16] J. Gui and T.M. Devine, Corrosion Science 32 (1991) 1105.
[17] D.S. Dunn, M.B. Bogart, C.S. Brossiaand and G.A. Cragnolino, Corrosion 56 (2000)
470.
[18] D.L.A. de Faria, S. Venâncio Silva and M.T. de Oliveira, Journal of Raman Specroscopy
28 (1997) 873.
[19] K.N. Jallad and D. Ben-Amotz, Material Science and Technology 17 (2001) 479.
[20] R. Balasubramaniam, A.V. Ramesh Kumar and P. Dillmann, Current Science 85 (2003)1546.
[21] F. Dubois, C. Mendibide, T. Pagnier, F. Perrard and C. Duret, Corrosion Science 50
(2008) 3401.
[22] T. Kamimura and M. Stratmann, Corrosion Science 43 (2001) 429.
[23] D. Cook, Corrosion Science 47 (2005) 2550.
[24] D. Neff, L. Bellot-Gurlet, P. Dillmann, S. Reguer and L. Legrand, Journal of Raman
Specroscopy 37 (2006) 1228.
[25] M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano and T. Misawa, Corrosion Science 36
(1994), p. 284.
[26] S. Ramya, T. Anita, H. Shaikh and R.K. Dayal, Corrosion Science 52(6) (2010) 2114-
2121.
[27] J.D. Ramsey and Richard L. McCreery, Corrosion Science 46 (2004) 1729
[28] T.L. Sudhesh, L. Wijesinghe and D.J. Blackwood, Applied Surface Science 253 (2006)
1006.
[29] S. Kikuchi, K. Kawauchi, M. Kurosawa, H. Honjho and T. Yahishita, Analytical
Sciences 21 (2005) 197.
[30] J.D. Ramsey and R.L. McCreery, Journal of the Electrochemical Society 146 (1999)
4076.
[31] J. Zhao, L. Xia, A. Sehgal, D. Lu, R.L. McCreery and G.S. Frankel, Surface and
Coatings Technology 140 (2001) 51.
[32] J.E. Maslar, W.S. Hurst, W.J. Bowers, J.H. Hendricks, M.I. Aquino and I. Levin, Applied
Surface Science 180 (2001) 102.
[33] In: R.C. Weast, Editor, Handbook of Chemistry and Physics (65th ed.), CRC Press, Boca
Raton, FL (1984).
[34] X. Tian, Ricky K.Y. Fu, Lianwei Wang and Paul K. Chu, Materials Science and
Engineering A316 (2001), p. 200.
[35] B. Garke, C. Edelmann, R. Gunzel and J. Brutscher, Surface Coating Technology 93
(1997), p. 318.
[36] N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman
Spectroscopy (third ed.), Academic Press, New York (1990).
[37] R. L. Frost, L. Duong and M. Weier. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 60(8-9) (2004) 1853-1859.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.