ABSTRACT
Solution route was applied to synthesize new family of free-fluoride synthetic clay. All starting
solutions were made by applying carbon tetra-chloride (CCl4) as a solvent. The selected sample of
synthetic free fluoride – Na-4-mica was having the general formula (Na4Mg6M4Si4O22·nH2O) where M
= Cr3+ was exposured to two different ɤ-irradiation doses 1st dose = 1.5 MR/h and 2nd dose = 3 MR/h at
25 cm distance. Structural parameters such as lattice constants, volume and phase quality were
monitoring carefully by using both of XRD and SEM evaluating grain size of the mica bulk. Structural
investigations proved that Cr-clay exhibits monoclinic phase accompanied with structure quality in
comparison with both of Bi-and Al-clays
References
[1] M. Plotze, G. Kahr, R. Hermann, Applied Clay Science 23 (2003) 195-202
[2] F.T. Madsen, Clay Mineral J., 33 (1998) 109-129.
[3] D.T. Reed, D.D. Scott, M.F. Weiner, Academic press – Orlando (1987) 325-338
[4] S. Komarneni and R. Ravella, Current Applied Physics 8 (2008) 104-106.
[5] K.O. Adebowale, I.E. Unuabonah and B.I. Olu-Owolabi, Journal of Hazardous Materials
B134(1-3) (2006) 130-139.
[6] Y. Al-degs, M.A.M. Khraisheh and M.F. Tutunji, Water Research 35(15) (2009) 3724-
3728.
[7] M.A. Al-Ghouti, M.A.M. Khraisheh and M. Tutuji, Chemical Engineering Journal 104(1-
3) (2004) 83-91.
[8] S.J. Allen and B. Koumanova, Journal of the University of Chemical Technology and
Metallurgy 40(3) (2005) 175-192.
[9] S. Aytas, S. Akyil, M.A.A. Aslani and U. Aytekin, Journal of Radioanalytical and
Nuclear Chemistry 240(3) (1999) 973-976.
[10] S. Babel, T.A. Kurniawan, Journal of Hazardous Materials B97(1-3) (2003) 219-243.
[11] E.P. Barrett, L.G. Youner and P. Halenda, Journal of the American Chemical Society
73(1) (1951) 373-380.
[12] K.G. Bhattacharyya and S.S. Gupta, Journal of Colloid and Interface Science 310(2)
(2007) 411-424.
[13] C. Camilo, G. Carmen and M. Paula, Journal of Chemical Technology & Biotechnology
80(4) (2005) 477-481.
[14] J.M. Charnock, K.E.R. England, M.L. Farquhar and D.J. Vaughan, Physica. B,
Condensed Matter 208-209 (1995) 457-458.
[15] T.N.D. Dantas, A.A.D. Neto, M.C.P. Moura, Water Research 35(9) (2001) 2219-2224.
[16] M.K. Doula and A. Ioannou, Microporous and Mesoporous Materials 58(2) (2003)115-
130.
[17] F. Ekmekyapar, A. Aslan, Y.K. Bayhan and A. Cakici, Biosorption of copper(II) by
nonliving lichen biomass of Cladonia rangiformis Hoffm, Journal of Hazardous Materials
137(1) (2006) 293-298.
[18] E. Erdem, N. Karapinar and R. Donat, Journal of Colloid and Interface Science 280(2)
(2004) 309-314.
[19] O. Hamdaouia and E. Naffrechoux, Journal of Hazardous Materials 147(1-2) (2007)
381-394.
[20] Y.S. Ho, J.F. Porter and G. McKay, Water, Air, and Soil Pollution 141(1-4) (2002) 1-33.
[21] IPCS (International Programme on Chemical Safety) 1998. Copper. Environmental
Health -Criteria 200. Geneva, Switzerland: World Health Organization (1998).
[22] A. Kayaa and A.H. Oren, Journal of Hazardous Materials B125(1-3) (2005) 183-189.
[23] M.A.M. Khraisheh, Y.S. Al-degs and W.A.M. Mcminn, Chemical Engineering Journal
99(2) (2004) 177-184.
[24] S. Kubilay, R. Gürkan, A. Savran and T. Şahan, Adsorption 13(1) (2007) 41-51.
[25] S. Lazarević, I. Janković-Častvan, D. Jovanović, S. Milonjić, Dj. Janaćković and R.
Petrović, Applied Clay Science 37(1-2) (2007) 47-57.
[26] S.-H. Lin and R.-S. Juang, Journal of Hazardous Materials B92(3) (2002) 315-326.
[27] N. Meunier, J. Laroulandie, J.F. Blais and R.D. Tyagi, Bioresource Technology 90(3)
(2003) 255-263.
[28] T. Mishra and S.K. Tiwari, Studies on sorption properties of zeolite derived from Indian
fly ash, Journal of Hazardous Materials B 137(1) (2006) 299-303.
[29] A.E. Osmanlioglu, Applied Radiation and Isotopes 65(1) (2007) 17-20.
[30] M. Panayotova and B. Velikov, Kinetics of heavy metal ions removal by use of natural
zeolite, Journal of Environmental Science and Health A 37(2) (2002) 139-147.
[31] T. Allard and G.Calas, Applied Clay Science 43 (2009) 143-149.
[32] Y. Kojima, A. Usuki, M. Kawasumi et al., “Mechanical properties of nylon 6-clay
hybrid,” Journal of Materials Research, 8(5) (1993) 1185-1189.
[33] A. Oya, Y. Kurokawa, and H. Yasuda, Journal of Materials Science, 35(5) (2000) 1045-
1050.
[34] J. W. Gilman, “Flammability and thermal stability studies of polymer layered-silicate
(clay) nanocomposites,” Applied Clay Science, 15(1-2) (1999) 31-49.
[35] A. Okada and M. Kawasumi, “Synthesis and characterization of a nylon 6-clay hybrid,”
Polymeric Preprints, 28(2) (1987) 447-448.
[36] S. S. Sinha Ray and M. Okamoto, Prog. Polym. Sci. 28(11) (2003) 1539-1641.
[37] Y. J. Huang, K. F. Yang, and J. Y. Dong, Macromolecular Rapid Communications,
27(15) (2006) 1278-1283.
[38] A. He, H. Hu, Y. Huang, J. Y. Dong, and C. C. Han, Macromolecular Rapid
Communications, 25(24) (2004) 2008-2013.
[39] L.-M. Wang, A.-H. He, K. Du, Y.-Q. Huang, J.-Y. Dong, and Z.-C. Han, “Structure
characterization and physical properties of exfoliated polypropylene/montmorillonite
nanocomposites synthegized via in situ polymerization,” Journal of Chemical Engineering of
Chinese Universities, 24(1) (2010) 132-137.
[40] F. Rault, C. Campagne, M. Rochery, S. Giraud, and E. Devaux, Journal of Polymer
Science, Part B: Polymer Physics, 48(11) (2010) 1185-1195.
[41] H. Qiao, Y. Cai, F. Chen, Fibers and Polymers, 10(6) (2010) 750755.
[42] M. Kato, A. Usuki, and A. Okada, “Synthesis of polypropylene oligomer-clay
intercalation compounds,” Journal of Applied Polymer Science, 66(9) (1997) 1781-1785.
[43] A. H. He, L. M. Wang, W. Yao, B. C. Huang, D. J. Wang, and C. C. Han, Polymer
Degradation and Stability, 95(4) (2010) 651-655.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.



