ABSTRACT
The governing equation of large amplitude simple pendulum is a nonlinear equation which is very difficult to be solved exactly and analytically. However, the classical way for finding analytical solution is obviously still very much important. This is because an exact analytical solution serves as an accurate benchmark for numerical solution and provides a better insight into the significance of various system parameters affecting the phenomena than the numerical solution. Therefore, in this present work, exact analytical solutions for nonlinear differential equation of large amplitude simple pendulum is presented. Also, with the aid of the exact analytical solutions, parametric studies are carried out to study the effects of the model parameters on the dynamic behavior of the large-amplitude nonlinear oscillation system. The solutions can serve as benchmarks for the numerical solution or approximate analytical solution.
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.