ABSTRACT
During solar activity the energy particles of the sun released due to solar flare, Coronal Mass
Ejections (CMEs), coronal heating as well as sunspot. Solar radio burst will be observed in the
presence of solar activity such solar flare, CMEs and solar prominence as the indicator for those
events to happen. During the peak of solar cycle, the filaments are present due to the active magnetic
field and solar storm’s explosion. This type of solar radio burst normally can be seen in the phase of
impulsive solar flare. Therefore, it is crucial to understand field line connectivity in flare and the
access of flare accelerated particle to the earth. In this study, we highlighted on the observation of
solar radio burst type III on 9th of May at 05:31 UT till 05:44 UT. The event was successfully recoded
by e-CALLISTO using BLEINSW radio telescope. The Solar Radio Burst Type III that had been
observed was related to the Coronal Mass Ejections and the mechanisms that trigger the events have
been discussed. It is shown that the CMEs is believed to happen because of the magnetic filament that
connected to active region (AR) 2339 was erupted, and combination of two wild filament produced a
bright CMEs. Fortunately, the expanding cloud does not appear to be heading for earth.
References
[1] Ali, M. O., Hamidi, Z. S., Shariff, N. N. M., & Monstein, C. (2015). An Analysis of a
Single Solar Radio Burst Type III and Type II Coronal Mass Ejections Associated to
Solar Flare Event. International Letters of Chemistry, Physics and Astronomy, 51, 17-
25. http://doi.org/10.18052/www.scipress.com/ILCPA.51.17
[2] Benz, A. O., Monstein, C., & Meyer, H. (2004). CALLISTO – A New Concept for Solar
Radio Spectrometers, 1-10.
[3] Cremades, H., & St. Cyr, O. C. (2007). Coronal mass ejections: Solar cycle aspects.
Advances in Space Research, 40(7), 1042-1048.
http://doi.org/10.1016/j.asr.2007.01.088
[4] Hamidi, Z. S., & Shariff, N. N. M. (2014). The Propagation of An Impulsive Coronal
Mass Ejections ( CMEs ) due to the High Solar Flares and Moreton Waves, 33, 118-
126. http://doi.org/10.18052/www.scipress.com/ILCPA.33.118
[5] Magara, T. (2007). A Possible Structure of the Magnetic Field in. The Astrophysical
Journal, Vol 59(Priest 1982), 51-55.
[6] Marusek, J. a. (2007). Solar Storm Threat Analysis. Impact, 1-29.
[7] Moon, Y., Choe, G. S., Wang, H., Park, Y. D., Gopalswamy, N., Yang, G., & Yashiro,
S. (2002). A STATISTICAL STUDY OF TWO CLASSES OF CORONAL MASS
EJECTIONS. The Astrophysical Journal, (2001), 694-702.
[8] Reid, H. A. S., & Ratcliffe, H. (2014). A review of solar type III radio bursts. Research
in Astronomy and Astrophysics, 14(7), 773-804. http://doi.org/10.1088/1674-4527/14/7/003
[9] White, S. M. (2007). Solar Radio Bursts and Space Weather.
[10] Wild, J. P., Smerd, S. F., & Weiss, A. A. (1963). SOLAR BURST. Annual Review of
Astronomy and Astrophysics, Vol. 1, p. 291; Vol. 1, 291-366.
http://doi.org/10.1007/s13398-014-0173-7.2
[11] Zainal, Z., Mohd, N., Sharizat, Z., Monstein, C., Abidin, Z., Umar, R., Sukma, I.
(2015). Radio frequency interference in solar monitoring using CALLISTO, 67, 18-33.
[12] Zavvari, A., Tariqul, M., Anwar, R., & Zainal, Z. (2015). Analysis of radio astronomy
bands using CALLISTO spectrometer at Malaysia-UKM station. Experimental
Astronomy. http://doi.org/10.1007/s10686-015-9480-z
[13] Z.S. Hamidi, N.N.M. Shariff, R. Umar, Influence Factors of Radio Frequency
Interference (RFI)for Solar Radio Astronomy Purpose at National Space Centre,
Malaysia Thailand Journal of Physics 3 (2012) 6.
[14] R. Umar, Z.Z. Abidin, Z.A. Ibrahim, M.S.R. Hassan, Z. Rosli, Z.S. Hamidi, Population
density effect on radio frequencies interference (RFI) in radio astronomy, AIP
Conference Proceedings 1454 (2012) 39.
[15] S. N. U. Sabri, Z. S. Hamidi, N. N. M. Shariff, C. Monstein, N. H. Zainol, M. Omar Ali,
Nurul Hazwani Hussien, Geo-effective Disturbances from the “Beta-Gamma-Delta”
Magnetic Fields on Active Region AR 2403, World Scientific News 37 (2016) 1-11.
[16] Nurul Hazwani Hussien, Z. S. Hamidi, M. O. Ali, S. N. U. Sabri, N. H. Zainol, N. M.
Shariff, C. Moinstein, Production of Coronal Mass Ejections in Relation With Complex
Solar Radio Burst Type III Correlated With Single Solar Radio Burst Type III, World
Scientific News 36 (2016) 96-108.
[17] N. H. Zainol, Z. S. Hamidi, N. N. M. Shariff, Marhana Omar Ali, Nurulhazwani
Husien, S. N. U. Sabri, C. Monstein, The Formation of Fundamental Structure of Solar
Radio Burst Type II Due X6.9 Class Solar Flare, World Scientific News 35 (2016) 30-43.
[18] Hamidi, Z., et al. Magnetic Reconnection of Solar Flare Detected by Solar Radio Burst
Type III. in Journal of Physics: Conference Series. 2014: IOP Publishing.
[19] Avendaño Valencia, J.D., Scaling Laws for Asymmetric Magnetic Reconnection,
Universidad Nacional de Colombia-Sede Manizales.
[20] Boischot, A., R. Lee, and J. Warwick, Low-Frequency Solar Bursts and Noise Storms.
The Astrophysical Journal, 1960. 131: p. 61.
[21] Gopalswamy, N., Recent advances in the long-wavelength radio physics of the Sun.
Planetary and Space Science, 2004. 52(15): p. 1399-1413.
[22] Nelson, G. and D. Melrose, Type II bursts. Solar Radiophysics: Studies of Emission
from the Sun at Metre Wavelengths, 1985. 1: p. 333-359.
[23] Wild, J., Observations of the spectrum of high-intensity solar radiation at metre
wavelengths. II. Outbursts. Australian Journal of Scientific Research A Physical
Sciences, 1950. 3: p. 399.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.