World Scientific News
EISSN 2392-2192
  • Login
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
SUBMIT ARTICLE
Register
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
World Scientific News
No Result
View All Result
Home 2024

Determination of Background PM2.5 Pollution levels in Nigeria using Hidden Markov Model

Authors: Tertsea Igbawua, Alexander Aondongu Tyovenda, Terver Sombo, Idugba Mathias Echi, 193(2) (2024) 133-153

2024-04-18
Reading Time: 10 mins read
0

ABSTRACT

Determining Background Particulate Matter equal to or less than 2.5 microns (BPM2.5) is crucial for understanding population exposure levels and devising mitigation measures. This study investigates the spatial and temporal distribution of BPM2.5 concentration in three Nigerian states (Abuja, Kano, and Lagos) from 2000 to 2022 using Hidden Markov Models (HMM). The HMM characterizes the PM2.5 data records into BPM2.5 profiles using 3-state and 5-state training algorithms. The Hidden Markov Models (HMM) were employed to estimate BPM2.5 concentrations, with the 5-state HMM outperforming the 3-state model. Analysis of background PM2.5 concentrations reveals higher levels in Kano compared to Abuja and Lagos, particularly during the dry season months. Spatial distribution highlights the influence of seasonal variations and geographical factors on air quality. The observed disparity in BPM2.5 concentrations between the states emphasizes the need for targeted interventions to mitigate air pollution and safeguard public health. The mean BPM2.5 concentrations for Abuja, Kano, and Lagos using the 5HMM model range from 16.4-18.4 µg/m3, 20.5-30.6 µg/m3, and 13.5-14.9 µg/m3, respectively. Dry season months, particularly December to January, consistently exhibit higher background BPM2.5 levels across the states. Conversely, the wet season months from May to August generally display lower levels. The contribution of BPM2.5 in ambient air during the High (HPP), Moderate (MPP), and Low Pollution periods (LPP) in Abuja was 69.09 %, 33.05 %, and 15.15 % respectively. In Kano, the contribution of BPM2.5 in ambient air during HPP, MPP, and LPP was 84.81 %, 47.47 %, and 23.13 % respectively. Meanwhile, the contribution of BPM2.5 in ambient air during HPP, MPP, and LPP in Lagos was 57.72 %, 22.06 %, and 12.61 % respectively. These findings provide valuable insights for policymakers and stakeholders in developing strategies to improve air quality in Nigerian states.

 

References

  • Al-Rashidi, M. S., Yassin, M. F., Alhajeri, N. S., & Malek, M. J. (2018). Gaseous air pollution background estimation in urban, suburban, and rural environments. Arab J Geosci, 11(3). https://doi.org/10.1007/s12517-017-3369-2
  • Arunachalam, S., Valencia, A., Akita, Y., Serre, M., Omary, M., Garcia, V., & Isakov, V. (2014). Developing a technique to estimate urban background concentrations to aid hybrid air pollution modeling for environmental health research. Int J Environ Res Public Health, 11(10), 10518–10536. https://doi.org/10.3390/ijerph111010518
  • Berkowicz, R. (2000). A Simple Model for Urban Background Pollution. In R. S. Sokhi, R. San José, N. Moussiopoulos, & R. Berkowicz (Eds.), Urban Air Quality: Measurement, Modelling and Management (pp. 295–306). https://doi.org/10.1007/978-94-010-0932-4_28
  • Buchard, V., Buchard, V., Randles, C. A., Silva, A., Darmenov, A. S., Colarco, P. R., Govindaraju, R. C., Ferrare, R. A., Hair, J., Beyersdorf, A. J., Ziemba, L. D., Yu, H., & Yu, H. (2017). The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J Clim, 30(17), 6851-6872. https://doi.org/10.1175/JCLI-D-16-0613.1
  • Bon, A. T., & Isah, N. (2016). Hidden Markov Model and Forward-Backward Algorithm in Crude Oil Price Forecasting. IOP Conference Series: Materials Science and Engineering, 160, 012067. doi:10.1088/1757-899x/160/1/012067
  • Buya, S., Usanavasin, S., Gokon, H., & Karnjana, J. (2023). Estimating daily PM2.5 concentration in Thailand using satellite data at 1-kilometer resolution. Sustainability, 15, 10024. https://doi.org/10.3390/su151310024
  • Colarco, P. R., Silva, A. M., Chin, M., & Diehl, T. (2010). Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth. Geophys. Res. 115. https://doi.org/10.1029/2009JD012820
  • Chaurasia, R., & Mohan, M. (2022). Estimation of background concentration of ambient pollutants for Delhi NCT region. Pollut. Res., 13(7), 101476. https://doi.org/10.1016/j.apr.2022.101476
  • Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., & Nakajima, T. (2002). Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Atmos. Sci. 59, 461–483. https://doi.org/10.1175/1520-0469(2002)0592.0.CO;2
  • Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., & Schwartz, J. (2016). Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Sci. Technol. 50(9), 4712–4721. https://doi.org/10.1021/acs.est.5b06121
  • van Donkelaar, A., Hammer, M. S., Bindle, L., Brauer, M., Brook, J. R., Garay, M. J., … Martin, R. V. (2021). Monthly global estimates of fine particulate matter and their uncertainty. Sci. Technol., 55(21), 15287–15300. https://doi.org/10.1021/acs.est.1c05309
  • van Donkelaar, A., Martin, R. V., & Park, R. J. (2006). Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. Geophys. Res., 111(D22). https://doi.org/10.1029/2005JD006996
  • van Donkelaar, A., Martin, R. V., Li, C., & Burnett, R. T. (2019). Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Sci. Technol., 53(5), 2595–2611. https://doi.org/10.1021/acs.est.8b06392
  • Dong, L., Li, S., Yang, J., Shi, W., & Zhang, L. (2020). Investigating the performance of satellite-based models in estimating the surface PM2.5 over China. Chemosphere, 256, 127051. https://doi.org/10.1016/j.chemosphere.2020.127051
  • Fang, X., Zou, B., Liu, X., Sternberg, T., & Zhai, L. (2016). Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sens. Environ., 186, 152–163. https://doi.org/10.1016/j.rse.2016.08.027
  • Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., & Zhang, L. (2018). Impact of 3DVAR assimilation of surface PM2.5 observations on PM2.5 forecasts over China during wintertime. Environ. 187, 34–49. https://doi.org/10.1016/j.atmosenv.2018.05.049
  • Gao, S., Cong, Z., Yu, H., Sun, Y., Mao, J., Zhang, H., & Bai, Z. (2018). Estimation of background concentration of PM in Beijing using a statistical integrated approach. Pollut. Res. https://doi.org/10.1016/j.apr.2018.12.014
  • Geng, G., Zhang, Q., Martin, R. V., van Donkelaar, A., Huo, H., Che, H., … He, K. (2015). Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ., 166, 262–270. https://doi.org/10.1016/j.rse.2015.05.016
  • Gómez-Losada, Á. (2017). Clustering Air Monitoring Stations According to Background and Ambient Pollution Using Hidden Markov Models and Multidimensional Scaling. Sci., 123–132. doi:10.1007/978-3-319-55723-6_10
  • Gómez-Losada, Á., Pires, J. C. M., & Pino-Mejías, R. (2016). Characterization of background air pollution exposure in urban environments using a metric based on Hidden Markov Models. Environ., doi: 10.1016/j.atmosenv.2015.12.046
  • Gómez-Losada, Á., Pires, J. C. M., & Pino-Mejías, R. (2018). Modelling background air pollution exposure in urban environments: Implications for epidemiological research. Model Softw., 106, 13-21. doi: 10.1016/j.envsoft.2018.02.011
  • Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., … Wang, Y. (2021). Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Total Environ., 778, 146288. https://doi.org/10.1016/j.scitotenv.2021.146288
  • Hand, J. L., Copeland, S. A., Day, D. E., Dillner, A. M., Indresand, H., Malm, W. C., … Watson, J. G. (2011). Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V June 2011. Interagency Monitoring of Protected Visual Environments.
  • Idris, M., Muhammad, A. G., Said, R. S., & Akpootu, D. O. (2022). Effect of Meteorological Parameters on the Dispersion of Vehicular Emission in Some Selected Areas in Kano State, Nigeria. Bayero J Pure Appl Sci, 13(1), 517–524. https://doi.org/10.1234/bjpas.2022.13.1.517
  • Jiang, T., Chen, B., Nie, Z., Ren, Z., Xu, B., & Tang, S. (2021). Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model. Res., 248. https://doi.org/10.1016/j.atmosres.2020.105146
  • Kibirige, G. W., Yang, M.-C., Liu, C.-L., & Chen, M.-C. (2023). Utilizing satellite data to predict PM2.5 concentrations in northern Taiwan by assessing the remote transportation of air pollutants. PLoS ONE, 18(3), e0282471. https://doi.org/10.1371/journal.pone.0282471
  • Lawal, H. A., & Muhammed, M. I. (2022). Atmospheric Physics; Air Pollution Monitoring and Analysis Using Purple Air Data. Sci. Rep. https://doi.org/10.46481/asr.2022.1.2.42
  • Li, G., Aboubakri, O., Soleimani, S., Maleki, A., Rezaee, R., Safari, M., … Fatehi, F. (2024). Estimation of PM2.5 using high-resolution satellite data and its mortality risk in an area of Iran. J. Environ. Health Res. Advance online publication. https://doi.org/10.1080/09603123.2024.2325629
  • Lin, C., Labzovskii, L. D., Mak, H. W. L., Fung, J. C. H., Lau, A. K. H., Kenea, S. T., … Ma, J. (2020). Observation of PM2.5 using a combination of satellite remote sensing and low-cost sensor network in Siberian urban areas with limited reference monitoring. Environ., 227, 117410. https://doi.org/10.1016/j.atmosenv.2020.117410
  • Mamdouh, E., & Zahran, M. M. (2015). Calibration of Background Concentrations versus the Use of Grid Sources in Air Pollution Dispersion Modelling. Asian J. Nat. Appl. Sci., 4, 1–11.
  • McKendry, I. G. (2006). Background Concentrations of PM2.5 and Ozone in British Columbia, Canada. Retrieved from https://www.for.gov.bc.ca/hfd/library/documents/bib107064.pdf
  • Ortiz, S. T., & Friedrich, R. (2013). A modelling approach for estimating background pollutant concentrations in urban areas. Pollut. Res., 4(2), 147–156. https://doi.org/10.5094/APR.2013.015
  • Paul, D. B. (1990). Speech Recognition Using Hidden Markov Models. Lincoln Laboratory Journal, 3(1).
  • Pineda Rojas, A. L., & Venegas, L. E. (2013). Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO2 concentrations. Res., 120–121, 147–154. https://doi.org/10.1016/j.atmosres.2012.08.010
  • Pournazeri, S., Tan, S. H., Schulte, N., Jing, Q., & Venkatram, A. (2014). A computationally efficient model for estimating background concentrations of NOx, NO2, and O3. Model Softw., 52, 19–37. https://doi.org/10.1016/j.envsoft.2013.10.018
  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. IEEE, 77(2), 267-295. https://doi.org/10.1109/5.18626
  • Randles, C. A., Silva, A., Buchard, V., Buchard, V., Colarco, P. R., Darmenov, A. S., … Flynn, C. J. (2017). The MERRA-2 Aerosol Reanalysis, 1980 – onward, Part I: System Description and Data Assimilation Evaluation. Clim., 30(17), 6823-6850. https://doi.org/10.1175/JCLI-D-16-0609.1
  • Rizos, K., Meleti, C., Kouvarakis, G., Mihalopoulos, N., & Melas, D. (2022). Determination of the background pollution in the Eastern Mediterranean applying a statistical clustering technique. Atmospheric Environment Volume 276, 1 May 2022, 119067
  • Soares, J., González Ortiz, A., Gsella, A., Horálek, J., Plass, D., & Kienzler, S. (2022). Health risk assessment of air pollution and the impact of the new WHO guidelines (Eionet Report – ETC HE 2022/10). Top. Centre Hum. Health Environ. Accessed from https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf on March 30, 2024
  • Sorek-Hamer, M., Chatfield, R., & Liu, Y. (2020). Strategies for incorporating satellite-based products in modeling PM2.5 and short-term pollution episodes: A review. Int., 144, 106057. https://doi.org/10.1016/j.envint.2020.106057
  • Sulaymon, I. D., Mei, X., Yang, S., Chen, S., Zhang, Y., Hopke, P. K., … Zhang, Y. (2019). PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Res., 104833. https://doi.org/10.1016/j.atmosres.2019.104833
  • Sulaymon, I. D., Zhang, Y., Hopke, P. K., Ye, F., Gong, K., Mao, J., & Hu, J. (2023). Modeling PM2.5 During Severe Atmospheric Pollution Episode in Lagos, Nigeria: Spatiotemporal Variations, Source Apportionment, and Meteorological Influences. Geophys. Res.: Atmos., 128. https://doi.org/10.1029/2022JD038360
  • Tariq, S., Mariam, A., Mehmood, U., & Ul-Haq, Z. (2023). Long term spatiotemporal trends and health risk assessment of remotely sensed PM2.5 concentrations in Nigeria. Pollut., 324, 121382. https://doi.org/10.1016/j.envpol.2023.121382
  • Tchepel, O., Costa, A. M., Martins, H., Ferreira, J., Monteiro, A., Miranda, A. I., & Borrego, C. (2010). Determination of background concentrations for air quality models using spectral analysis and filtering of monitoring data. Environ., 44(1), 106–114. https://doi.org/10.1016/j.atmosenv.2009.08.038
  • Venegas, L. E., & Mazzeo, N. A. (2006). Modelling of urban background pollution in Buenos Aires City (Argentina). Model Softw., 21(4), 577–586. https://doi.org/10.1016/j.envsoft.2004.08.013
  • Wang, S., Hung, R., Lin, N., Gómez-Losada, Á., Pires, J. C., Shimada, K., … Takami, A. (2020). Estimation of background PM2.5 concentrations for an air-polluted environment. Res., 231, 104636.
  • Wambebe, N. M., & Duan, X. (2020). Air Quality Levels and Health Risk Assessment of Particulate Matters in Abuja Municipal Area, Nigeria. Atmosphere, 11, 817. https://doi.org/10.3390/atmos11080817
  • World Health Organization. (‎2021). WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health. Retrieved from https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf
  • Yap, K., & Chong, Y. (2017). Optimized access point selection with mobility prediction using hidden Markov Model for wireless network. 2017 Ninth Int. Conf. Ubiquitous Future Networks (ICUFN), 38-42. https://doi.org/10.1109/ICUFN.2017.7993744

Download all article in PDF

WSN 193(2) (2024) 133-153


 

ADVERTISEMENT
Tags: AbujaBackground PM2.5Hidden Markov ModelKanoLagos
ShareTweetPin
Next Post

Analysis of Influence of Metrological Factor on Surface Tropospheric Refractivity and Determination of Refractivity Gradient over Coastal Region of Niger Delta, Nigeria

Investigating Cu(II) Mixed-Ligand Complexes with Quinazolinone Schiff Bases and a Coumarin Derivative: Synthesis, Characterization, and Biological Assessment

View free articles

  • Open access

View Articles

  • 2013 (5)
    • Volume 1 (2013), pp. 1-14 (2)
    • Volume 2 (2013), pp. 1-29 (3)
  • 2014 (13)
    • Volume 3 (2014), pp. 1-21 (3)
    • Volume 4 (2014), pp. 1-16 (2)
    • Volume 5 (2014), pp. 1-36 (4)
    • Volume 6 (2014), pp. 1-23 (3)
  • 2015 (109)
    • Volume 10 (2015), pp. 1-100 (5)
    • Volume 11 (2015), pp. 1-96 (6)
    • Volume 12 (2015), pp. 1-76 (6)
    • Volume 13 (2015), pp. 1-130 (7)
    • Volume 14 (2015), pp. 1-55 (1)
    • Volume 15 (2015), pp. 1-25 (2)
    • Volume 16 (2015), pp. 1-158 (9)
    • Volume 17 (2015), pp. 1-63 (1)
    • Volume 18 (2015), pp. 1-127 (8)
    • Volume 19 (2015), pp. 1-111 (7)
    • Volume 20 (2015), pp. 1-336 (1)
    • Volume 21 (2015), pp. 1-89 (7)
    • Volume 22 (2015), pp. 1-119 (8)
    • Volume 23 (2015), pp. 1-127 (10)
    • Volume 24 (2015), pp. 1-87 (6)
    • Volume 7 (2015), pp. 1-237 (9)
    • Volume 8 (2015), pp. 1-203 (7)
    • Volume 9 (2015), pp. 1-160 (9)
  • 2016 (517)
    • Volume 25 (2016), pp. 1-16 (2)
    • Volume 26 (2016), pp. 1-19 (2)
    • Volume 27 (2016), pp. 1-16 (2)
    • Volume 28 (2016), pp. 1-100 (7)
    • Volume 29 (2016), pp. 1-95 (6)
    • Volume 30 (2016), pp. 1-142 (10)
    • Volume 31 (2016), pp. 1-124 (8)
    • Volume 32 (2016), pp. 1-81 (9)
    • Volume 33 (2016), pp. 1-121 (8)
    • Volume 34 (2016), pp. 1-145 (10)
    • Volume 35 (2016), pp. 1-133 (10)
    • Volume 36 (2016), pp. 1-152 (10)
    • Volume 37 (2016), pp. 1-303 (18)
    • Volume 38 (2016), pp. 1-59 (1)
    • Volume 39 (2016), pp. 1-30 (2)
    • Volume 40 (2016), pp. 1-299 (20)
    • Volume 41 (2016), pp. 1-287 (36)
    • Volume 42 (2016), pp. 1-316 (21)
    • Volume 43(1,2,3) (2016), pp. 1-157 (3)
      • Volume 43, Issue 1 (2016), pp. 1-55 (1)
      • Volume 43, Issue 2 (2016), pp. 56-103 (1)
      • Volume 43, Issue 3 (2016), pp. 104-157 (1)
    • Volume 44 (2016), pp. 1-301 (20)
    • Volume 45(1,2) (2016), pp. 1-383 (21)
      • Volume 45, Issue 1 (2016), pp. 1-62 (1)
      • Volume 45, Issue 2 (2016), pp. 63-383 (20)
    • Volume 46 (2016), pp. 1-286 (20)
    • Volume 47(1,2) (2016), pp. 1-350 (21)
      • Volume 47, Issue 1 (2016), pp. 1-61 (1)
      • Volume 47, Issue 2 (2016), pp. 62-350 (20)
    • Volume 48 (2016), pp. 1-163 (17)
    • Volume 49(1,2) (2016), pp. 1-404 (21)
      • Volume 49, Issue 1 (2016), pp. 1-58 (1)
      • Volume 49, Issue 2 (2016), pp. 59-404 (20)
    • Volume 50 (2016), pp. 1-316 (20)
    • Volume 51 (2016), pp. 1-71 (7)
    • Volume 52 (2016), pp. 1-275 (20)
    • Volume 53(1,2,3) (2016), pp. 1-429 (22)
      • Volume 53, Issue 1 (2016), pp. 1-66 (1)
      • Volume 53, Issue 2 (2016), pp. 67-109 (1)
      • Volume 53, Issue 3 (2016), pp. 110-429 (20)
    • Volume 54 (2016), pp. 1-299 (20)
    • Volume 55 (2016), pp. 1-288 (20)
    • Volume 56 (2015), pp. 1-266 (20)
    • Volume 57 (2016), pp. 1-570 (53)
    • Volume 58 (2016), pp. 1-161 (10)
    • Volume 59 (2016), pp. 1-128 (10)
    • Volume 60 (2016), pp. 1-120 (10)
  • 2017 (481)
    • Volume 61(1,2) (2017), pp. 1-194 (11)
      • Volume 61, Issue 1 (2017), pp. 1-51 (1)
      • Volume 61, Issue 2 (2017), pp. 52-194 (10)
    • Volume 62 (2017), pp. 1-146 (10)
    • Volume 63 (2017), pp. 1-240 (1)
    • Volume 64 (2017), pp. 1-140 (10)
    • Volume 65 (2017), pp. 1-175 (10)
    • Volume 66 (2017), pp. 1-300 (20)
    • Volume 67(1,2,) (2017), pp. 1-389 (21)
      • Volume 67, Issue 1 (2017), pp. 1-67 (1)
      • Volume 67, Issue 2 (2017), pp. 68-389 (20)
    • Volume 68 (2017), pp. 1-141 (1)
    • Volume 69 (2017), pp. 1-253 (20)
    • Volume 70(1,2) (2017), pp. 1-321 (21)
      • Volume 70, Issue 1 (2017), pp. 1-50 (1)
      • Volume 70, Issue 2 (2017), pp. 51-321 (20)
    • Volume 71 (2017), pp. 1-219 (18)
    • Volume 72 (2017), pp. 1-478 (46)
    • Volume 73 (2017), pp. 1-133 (15)
    • Volume 74 (2017), pp. 1-287 (20)
    • Volume 75 (2017), pp. 1-111 (12)
    • Volume 76 (2017), pp. 1-199 (20)
    • Volume 77(1,2) (2017), pp. 1-380 (21)
      • Volume 77, Issue 1 (2017), pp. 1-102 (1)
      • Volume 77, Issue 2 (2017), pp. 103-380 (20)
    • Volume 78 (2017), pp. 1-230 (24)
    • Volume 79 (2017), pp. 1-89 (1)
    • Volume 80 (2017), pp. 1-323 (20)
    • Volume 81(1,2) (2017), pp. 1-312 (21)
      • Volume 81, Issue 1 (2017), pp. 1-47 (1)
      • Volume 81, Issue 2 (2017), pp. 48-312 (20)
    • Volume 82 (2017), pp. 1-90 (1)
    • Volume 83 (2017), pp. 1-239 (20)
    • Volume 84 (2017), pp. 1-92 (1)
    • Volume 85 (2017), pp. 1-73 (10)
    • Volume 86(1,2,3) (2017), pp. 1-370 (22)
      • Volume 86, Issue 1 (2017), pp. 1-58 (1)
      • Volume 86, Issue 2 (2017), pp. 59-122 (1)
      • Volume 86, Issue 3 (2017), pp. 123-370 (20)
    • Volume 87 (2017), pp. 1-255 (20)
    • Volume 88(1,2) (2017), pp. 1-226 (11)
      • Volume 88, Issue 1 (2017), pp. 1-57 (1)
      • Volume 88, Issue 2 (2017), pp. 58-226 (10)
    • Volume 89 (2017), pp. 1-321 (33)
    • Volume 90 (2017), pp. 1-270 (20)
  • 2018 (486)
    • Volume 100 (2018), pp. 1-253 (20)
    • Volume 101 (2018), pp. 1-252 (20)
    • Volume 102 (2018), pp. 1-223 (20)
    • Volume 103 (2018), pp. 1-249 (18)
    • Volume 104 (2018), pp. 1-492 (40)
    • Volume 105 (2018), pp. 1-232 (20)
    • Volume 106 (2018), pp. 1-244 (20)
    • Volume 107 (2018), pp. 1-232 (20)
    • Volume 108 (2018), pp. 1-244 (20)
    • Volume 109 (2018), pp. 1-266 (19)
    • Volume 110 (2018), pp. 1-243 (20)
    • Volume 111 (2018), pp. 1-181 (17)
    • Volume 112 (2018), pp. 1-251 (20)
    • Volume 113 (2018), pp. 1-250 (26)
    • Volume 114 (2018), pp. 1-264 (20)
    • Volume 91 (2018), pp. 1-137 (10)
    • Volume 92(1,2) (2018), pp. 1-399 (21)
      • Volume 92, Issue 1 (2018), pp. 1-138 (1)
      • Volume 92, Issue 2 (2018), pp. 139-399 (20)
    • Volume 93 (2018), pp. 1-141 (15)
    • Volume 94(1,2) (2018), pp. 1-332 (21)
      • Volume 94, Issue 1 (2018), pp. 1-71 (1)
      • Volume 94, Issue 2 (2018), pp. 72-332 (20)
    • Volume 95 (2018), pp. 1-272 (20)
    • Volume 96 (2018), pp. 1-250 (20)
    • Volume 97 (2018), pp. 1-284 (20)
    • Volume 98 (2018), pp. 1-232 (20)
    • Volume 99 (2018), pp. 1-229 (19)
  • 2019 (467)
    • Volume 115 (2019), pp. 1-268 (20)
    • Volume 116 (2019), pp. 1-252 (19)
    • Volume 117 (2019), pp. 1-242 (20)
    • Volume 118 (2019), pp. 1-280 (20)
    • Volume 119 (2019), pp. 1-253 (20)
    • Volume 120(1,2) (2019), pp. 1-295 (21)
      • Volume 120, Issue 1 (2019), pp. 1-59 (1)
      • Volume 120, Issue 2 (2019), pp. 60-295 (20)
    • Volume 121 (2019), pp. 1-100 (13)
    • Volume 122 (2019), pp. 1-262 (20)
    • Volume 123 (2019), pp. 1-273 (20)
    • Volume 124(1,2) (2019), pp. 1-333 (21)
      • Volume 124, Issue 1 (2019), pp. 1-85 (1)
      • Volume 124, Issue 2 (2019), pp. 86-1-333 (20)
    • Volume 125 (2019), pp. 1-259 (20)
    • Volume 126 (2019), pp. 1-298 (20)
    • Volume 127(1,2,3) (2019), pp. 1-376 (22)
      • Volume 127, Issue 1 (2019), pp. 1-55 (1)
      • Volume 127, Issue 2 (2019), pp. 56-105 (1)
      • Volume 127, Issue 3 (2019), pp. 106-376 (20)
    • Volume 128(1,2) (2019), pp. 1-432 (21)
      • Volume 128, Issue 1 (2019), pp. 1-70 (1)
      • Volume 128, Issue 2 (2019), pp. 71-432 (20)
    • Volume 129 (2019), pp. 1-267 (20)
    • Volume 130 (2019), pp. 1-308 (20)
    • Volume 131 (2019), pp. 1-288 (20)
    • Volume 132 (2019), pp. 1-312 (24)
    • Volume 133 (2019), pp. 1-274 (20)
    • Volume 134(1,2) (2020), pp. 1-338 (21)
      • Volume 134, Issue 1 (2019), pp. 1-51 (1)
      • Volume 134, Issue 2 (2019), pp. 52-338 (20)
    • Volume 135 (2019), pp. 1-298 (22)
    • Volume 136 (2019), pp. 1-246 (16)
    • Volume 137 (2019), pp. 1-236 (14)
    • Volume 138(1,2) (2019), pp. 1-294 (13)
      • Volume 138, Issue 1 (2019), pp. 1-64 (1)
      • Volume 138, Issue 2 (2019), pp. 65-294 (12)
  • 2020 (179)
    • Volume 139(1,2) (2020), pp. 1-258 (13)
      • Volume 139, Issue 1 (2020), pp. 1-60 (1)
      • Volume 139, Issue 2 (2020), pp. 61-258 (12)
    • Volume 140 (2020), pp. 1-184 (10)
    • Volume 141 (2020), pp. 1-155 (10)
    • Volume 142 (2020), pp. 1-194 (12)
    • Volume 143 (2020), pp. 1-261 (16)
    • Volume 144 (2020), pp. 1-449 (30)
    • Volume 145 (2020), pp. 1-408 (30)
    • Volume 146 (2020), pp. 1-289 (18)
    • Volume 147 (2020), pp. 1-208 (12)
    • Volume 148 (2020), pp. 1-121 (8)
    • Volume 149 (2020), pp. 1-165 (10)
    • Volume 150 (2020), pp. 1-181 (10)
  • 2021 (143)
    • Volume 151 (2021), pp. 1-122 (8)
    • Volume 152 (2021), pp. 1-125 (8)
    • Volume 153(1,2) (2021), pp. 1-215 (13)
      • Volume 153, Issue 1 (2021), pp. 1-42 (1)
      • Volume 153, Issue 2 (2021), pp. 43-215 (12)
    • Volume 154 (2021), pp. 1-174 (10)
    • Volume 155 (2021), pp. 1-154 (10)
    • Volume 156 (2021), pp. 1-191 (12)
    • Volume 157 (2021), pp. 1-188 (10)
    • Volume 158 (2021), pp. 1-298 (16)
    • Volume 159 (2021), pp. 1-223 (14)
    • Volume 160 (2021), pp. 1-337 (20)
    • Volume 161 (2021), pp. 1-156 (10)
    • Volume 162 (2021), pp. 1-178 (12)
  • 2022 (125)
    • Volume 163 (2022), pp. 1-157 (8)
    • Volume 164 (2022), pp. 1-149 (8)
    • Volume 165 (2022), pp. 1-209 (12)
    • Volume 166 (2022), pp. 1-145 (10)
    • Volume 167 (2022), pp. 1-161 (9)
    • Volume 168 (2022), pp. 1-146 (10)
    • Volume 169 (2022), pp. 1-201 (10)
    • Volume 170 (2022), pp. 1-171 (10)
    • Volume 171 (2022), pp. 1-125 (8)
    • Volume 172 (2022), pp. 1-333 (20)
    • Volume 173 (2022), pp. 1-161 (10)
    • Volume 174 (2022), pp. 1-176 (10)
  • 2023 (132)
    • Volume 175 (2023), pp. 1-108 (8)
    • Volume 176 (2023), pp. 1-174 (10)
    • Volume 177 (2023), pp. 1-136 (8)
    • Volume 178 (2023), pp. 1-165 (10)
    • Volume 179 (2023), pp. 1-164 (10)
    • Volume 180 (2023), pp. 1-162 (12)
    • Volume 181 (2023), pp. 1-215 (12)
    • Volume 182 (2023), pp. 1-265 (18)
    • Volume 183 (2023), pp. 1-226 (14)
    • Volume 184 (2023), pp. 1-154 (10)
    • Volume 185 (2023), pp. 1-191 (10)
    • Volume 186 (2023), pp. 1-160 (10)
  • 2024 (183)
    • Volume 187 (2024), pp. 1-156 (10)
    • Volume 188 (2024), pp. 1-197 (12)
    • Volume 189 (2024), pp. 1-310 (20)
    • Volume 190(1,2) (2024), pp. 1-351 (18)
      • Volume 190, Issue 1 (2024), pp. 1-69 (1)
      • Volume 190, Issue 2 (2024), pp. 70-351 (17)
    • Volume 191 (2024), pp. 1-207 (12)
    • Volume 192 (2024), pp. 1-319 (20)
    • Volume 193(1,2) (2024), pp. 1-252 (13)
      • Volume 193, Issue 1 (2024), pp. 1-45 (1)
      • Volume 193, Issue 2 (2024), pp. 46-252 (12)
    • Volume 194 (2024), pp. 1-213 (13)
    • Volume 195 (2024), pp. 1-235 (13)
    • Volume 196 (2024), pp. 1-221 (14)
    • Volume 197 (2024), pp. 1-231 (15)
    • Volume 198 (2024), pp. 1-402 (23)
  • 2025 (169)
    • Volume 199 (2025), pp. 1-253 (16)
    • Volume 200 (2025), pp. 1-223 (14)
    • Volume 201 (2025), pp. 1-245 (12)
    • Volume 202 (2025), pp. 1-317 (17)
    • Volume 203 (2025), pp. 1-438 (15)
    • Volume 204 (2025), pp. 1-353 (19)
    • Volume 205 (2025), pp. 1-272 (16)
    • Volume 206 (2025), pp. 1-172 (13)
    • Volume 207 (2025), pp. 1-173 (12)
    • Volume 208 (2025), pp. 1-174 (11)
    • Volume 209 (2025), pp. 1-184 (12)
    • Volume 210 (2025), pp. 1-158 (12)
  • 2026 (21)
    • Volume 211 (2026), pp. (21)
  • Info (6)
  • News (3)
  • Open access (460)
  • Premium (38)

Last Articles

  • All
  • Premium
  • Open access

Evaluation of cytotoxicity of sodium benzoate and fresh and boiled green chili pepper (Capsicum annuum L.) on human red blood cells

2024-02-17

Hidden Connections Between NanoTesla Magnetic Fields, Cosic Molecular Resonance, and Photonic Fields Within Living Systems

2024-01-25

Challenges of conducting and publishing communication research in selected tertiary institutions in Taraba State, Nigeria

2024-01-04

Popular Articles

  • About Us

    About Us

    0 shares
    Share 0 Tweet 0
  • Submit your Article

    0 shares
    Share 0 Tweet 0
  • Jeevamrut – A Natural Fertilizer

    0 shares
    Share 0 Tweet 0
  • Abstracting & Indexing

    0 shares
    Share 0 Tweet 0
  • Guide for Authors

    0 shares
    Share 0 Tweet 0

Careers

  • All
  • Careers
No Content Available
World Scientific News

World Scientific News (WSN) is an open-access fully peer-reviewed scholarly journal. The monthly – interdisciplinary journal is directed in the first place to scientists who want to publish their findings, insights, observations, conclusions, etc.

READ MORE

Menu

  • Home
  • About Us
  • Editorial Board
  • Guide for Authors
  • Instruction for Authors
  • Abstracting & Indexing
  • Submit your Article
  • Careers
  • News

Other databases

AGRO
CAS
Google Scholar
Google Scholar Metrics
ICZN
ProQuest
Road Directory
ZooBank

EISSN 2392-2192

Login / Register
Privacy Policy
Cookie Policy

made by fixfix

No Result
View All Result
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News

made by fixfix

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.