ABSTRACT
Determining Background Particulate Matter equal to or less than 2.5 microns (BPM2.5) is crucial for understanding population exposure levels and devising mitigation measures. This study investigates the spatial and temporal distribution of BPM2.5 concentration in three Nigerian states (Abuja, Kano, and Lagos) from 2000 to 2022 using Hidden Markov Models (HMM). The HMM characterizes the PM2.5 data records into BPM2.5 profiles using 3-state and 5-state training algorithms. The Hidden Markov Models (HMM) were employed to estimate BPM2.5 concentrations, with the 5-state HMM outperforming the 3-state model. Analysis of background PM2.5 concentrations reveals higher levels in Kano compared to Abuja and Lagos, particularly during the dry season months. Spatial distribution highlights the influence of seasonal variations and geographical factors on air quality. The observed disparity in BPM2.5 concentrations between the states emphasizes the need for targeted interventions to mitigate air pollution and safeguard public health. The mean BPM2.5 concentrations for Abuja, Kano, and Lagos using the 5HMM model range from 16.4-18.4 µg/m3, 20.5-30.6 µg/m3, and 13.5-14.9 µg/m3, respectively. Dry season months, particularly December to January, consistently exhibit higher background BPM2.5 levels across the states. Conversely, the wet season months from May to August generally display lower levels. The contribution of BPM2.5 in ambient air during the High (HPP), Moderate (MPP), and Low Pollution periods (LPP) in Abuja was 69.09 %, 33.05 %, and 15.15 % respectively. In Kano, the contribution of BPM2.5 in ambient air during HPP, MPP, and LPP was 84.81 %, 47.47 %, and 23.13 % respectively. Meanwhile, the contribution of BPM2.5 in ambient air during HPP, MPP, and LPP in Lagos was 57.72 %, 22.06 %, and 12.61 % respectively. These findings provide valuable insights for policymakers and stakeholders in developing strategies to improve air quality in Nigerian states.
References
- Al-Rashidi, M. S., Yassin, M. F., Alhajeri, N. S., & Malek, M. J. (2018). Gaseous air pollution background estimation in urban, suburban, and rural environments. Arab J Geosci, 11(3). https://doi.org/10.1007/s12517-017-3369-2
- Arunachalam, S., Valencia, A., Akita, Y., Serre, M., Omary, M., Garcia, V., & Isakov, V. (2014). Developing a technique to estimate urban background concentrations to aid hybrid air pollution modeling for environmental health research. Int J Environ Res Public Health, 11(10), 10518–10536. https://doi.org/10.3390/ijerph111010518
- Berkowicz, R. (2000). A Simple Model for Urban Background Pollution. In R. S. Sokhi, R. San José, N. Moussiopoulos, & R. Berkowicz (Eds.), Urban Air Quality: Measurement, Modelling and Management (pp. 295–306). https://doi.org/10.1007/978-94-010-0932-4_28
- Buchard, V., Buchard, V., Randles, C. A., Silva, A., Darmenov, A. S., Colarco, P. R., Govindaraju, R. C., Ferrare, R. A., Hair, J., Beyersdorf, A. J., Ziemba, L. D., Yu, H., & Yu, H. (2017). The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J Clim, 30(17), 6851-6872. https://doi.org/10.1175/JCLI-D-16-0613.1
- Bon, A. T., & Isah, N. (2016). Hidden Markov Model and Forward-Backward Algorithm in Crude Oil Price Forecasting. IOP Conference Series: Materials Science and Engineering, 160, 012067. doi:10.1088/1757-899x/160/1/012067
- Buya, S., Usanavasin, S., Gokon, H., & Karnjana, J. (2023). Estimating daily PM2.5 concentration in Thailand using satellite data at 1-kilometer resolution. Sustainability, 15, 10024. https://doi.org/10.3390/su151310024
- Colarco, P. R., Silva, A. M., Chin, M., & Diehl, T. (2010). Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth. Geophys. Res. 115. https://doi.org/10.1029/2009JD012820
- Chaurasia, R., & Mohan, M. (2022). Estimation of background concentration of ambient pollutants for Delhi NCT region. Pollut. Res., 13(7), 101476. https://doi.org/10.1016/j.apr.2022.101476
- Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V., Logan, J. A., Higurashi, A., & Nakajima, T. (2002). Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements. Atmos. Sci. 59, 461–483. https://doi.org/10.1175/1520-0469(2002)0592.0.CO;2
- Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., & Schwartz, J. (2016). Assessing PM2.5 exposures with high spatiotemporal resolution across the continental United States. Sci. Technol. 50(9), 4712–4721. https://doi.org/10.1021/acs.est.5b06121
- van Donkelaar, A., Hammer, M. S., Bindle, L., Brauer, M., Brook, J. R., Garay, M. J., … Martin, R. V. (2021). Monthly global estimates of fine particulate matter and their uncertainty. Sci. Technol., 55(21), 15287–15300. https://doi.org/10.1021/acs.est.1c05309
- van Donkelaar, A., Martin, R. V., & Park, R. J. (2006). Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. Geophys. Res., 111(D22). https://doi.org/10.1029/2005JD006996
- van Donkelaar, A., Martin, R. V., Li, C., & Burnett, R. T. (2019). Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Sci. Technol., 53(5), 2595–2611. https://doi.org/10.1021/acs.est.8b06392
- Dong, L., Li, S., Yang, J., Shi, W., & Zhang, L. (2020). Investigating the performance of satellite-based models in estimating the surface PM2.5 over China. Chemosphere, 256, 127051. https://doi.org/10.1016/j.chemosphere.2020.127051
- Fang, X., Zou, B., Liu, X., Sternberg, T., & Zhai, L. (2016). Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sens. Environ., 186, 152–163. https://doi.org/10.1016/j.rse.2016.08.027
- Feng, S., Jiang, F., Jiang, Z., Wang, H., Cai, Z., & Zhang, L. (2018). Impact of 3DVAR assimilation of surface PM2.5 observations on PM2.5 forecasts over China during wintertime. Environ. 187, 34–49. https://doi.org/10.1016/j.atmosenv.2018.05.049
- Gao, S., Cong, Z., Yu, H., Sun, Y., Mao, J., Zhang, H., & Bai, Z. (2018). Estimation of background concentration of PM in Beijing using a statistical integrated approach. Pollut. Res. https://doi.org/10.1016/j.apr.2018.12.014
- Geng, G., Zhang, Q., Martin, R. V., van Donkelaar, A., Huo, H., Che, H., … He, K. (2015). Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ., 166, 262–270. https://doi.org/10.1016/j.rse.2015.05.016
- Gómez-Losada, Á. (2017). Clustering Air Monitoring Stations According to Background and Ambient Pollution Using Hidden Markov Models and Multidimensional Scaling. Sci., 123–132. doi:10.1007/978-3-319-55723-6_10
- Gómez-Losada, Á., Pires, J. C. M., & Pino-Mejías, R. (2016). Characterization of background air pollution exposure in urban environments using a metric based on Hidden Markov Models. Environ., doi: 10.1016/j.atmosenv.2015.12.046
- Gómez-Losada, Á., Pires, J. C. M., & Pino-Mejías, R. (2018). Modelling background air pollution exposure in urban environments: Implications for epidemiological research. Model Softw., 106, 13-21. doi: 10.1016/j.envsoft.2018.02.011
- Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., … Wang, Y. (2021). Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Total Environ., 778, 146288. https://doi.org/10.1016/j.scitotenv.2021.146288
- Hand, J. L., Copeland, S. A., Day, D. E., Dillner, A. M., Indresand, H., Malm, W. C., … Watson, J. G. (2011). Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V June 2011. Interagency Monitoring of Protected Visual Environments.
- Idris, M., Muhammad, A. G., Said, R. S., & Akpootu, D. O. (2022). Effect of Meteorological Parameters on the Dispersion of Vehicular Emission in Some Selected Areas in Kano State, Nigeria. Bayero J Pure Appl Sci, 13(1), 517–524. https://doi.org/10.1234/bjpas.2022.13.1.517
- Jiang, T., Chen, B., Nie, Z., Ren, Z., Xu, B., & Tang, S. (2021). Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model. Res., 248. https://doi.org/10.1016/j.atmosres.2020.105146
- Kibirige, G. W., Yang, M.-C., Liu, C.-L., & Chen, M.-C. (2023). Utilizing satellite data to predict PM2.5 concentrations in northern Taiwan by assessing the remote transportation of air pollutants. PLoS ONE, 18(3), e0282471. https://doi.org/10.1371/journal.pone.0282471
- Lawal, H. A., & Muhammed, M. I. (2022). Atmospheric Physics; Air Pollution Monitoring and Analysis Using Purple Air Data. Sci. Rep. https://doi.org/10.46481/asr.2022.1.2.42
- Li, G., Aboubakri, O., Soleimani, S., Maleki, A., Rezaee, R., Safari, M., … Fatehi, F. (2024). Estimation of PM2.5 using high-resolution satellite data and its mortality risk in an area of Iran. J. Environ. Health Res. Advance online publication. https://doi.org/10.1080/09603123.2024.2325629
- Lin, C., Labzovskii, L. D., Mak, H. W. L., Fung, J. C. H., Lau, A. K. H., Kenea, S. T., … Ma, J. (2020). Observation of PM2.5 using a combination of satellite remote sensing and low-cost sensor network in Siberian urban areas with limited reference monitoring. Environ., 227, 117410. https://doi.org/10.1016/j.atmosenv.2020.117410
- Mamdouh, E., & Zahran, M. M. (2015). Calibration of Background Concentrations versus the Use of Grid Sources in Air Pollution Dispersion Modelling. Asian J. Nat. Appl. Sci., 4, 1–11.
- McKendry, I. G. (2006). Background Concentrations of PM2.5 and Ozone in British Columbia, Canada. Retrieved from https://www.for.gov.bc.ca/hfd/library/documents/bib107064.pdf
- Ortiz, S. T., & Friedrich, R. (2013). A modelling approach for estimating background pollutant concentrations in urban areas. Pollut. Res., 4(2), 147–156. https://doi.org/10.5094/APR.2013.015
- Paul, D. B. (1990). Speech Recognition Using Hidden Markov Models. Lincoln Laboratory Journal, 3(1).
- Pineda Rojas, A. L., & Venegas, L. E. (2013). Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO2 concentrations. Res., 120–121, 147–154. https://doi.org/10.1016/j.atmosres.2012.08.010
- Pournazeri, S., Tan, S. H., Schulte, N., Jing, Q., & Venkatram, A. (2014). A computationally efficient model for estimating background concentrations of NOx, NO2, and O3. Model Softw., 52, 19–37. https://doi.org/10.1016/j.envsoft.2013.10.018
- Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. IEEE, 77(2), 267-295. https://doi.org/10.1109/5.18626
- Randles, C. A., Silva, A., Buchard, V., Buchard, V., Colarco, P. R., Darmenov, A. S., … Flynn, C. J. (2017). The MERRA-2 Aerosol Reanalysis, 1980 – onward, Part I: System Description and Data Assimilation Evaluation. Clim., 30(17), 6823-6850. https://doi.org/10.1175/JCLI-D-16-0609.1
- Rizos, K., Meleti, C., Kouvarakis, G., Mihalopoulos, N., & Melas, D. (2022). Determination of the background pollution in the Eastern Mediterranean applying a statistical clustering technique. Atmospheric Environment Volume 276, 1 May 2022, 119067
- Soares, J., González Ortiz, A., Gsella, A., Horálek, J., Plass, D., & Kienzler, S. (2022). Health risk assessment of air pollution and the impact of the new WHO guidelines (Eionet Report – ETC HE 2022/10). Top. Centre Hum. Health Environ. Accessed from https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf on March 30, 2024
- Sorek-Hamer, M., Chatfield, R., & Liu, Y. (2020). Strategies for incorporating satellite-based products in modeling PM2.5 and short-term pollution episodes: A review. Int., 144, 106057. https://doi.org/10.1016/j.envint.2020.106057
- Sulaymon, I. D., Mei, X., Yang, S., Chen, S., Zhang, Y., Hopke, P. K., … Zhang, Y. (2019). PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Res., 104833. https://doi.org/10.1016/j.atmosres.2019.104833
- Sulaymon, I. D., Zhang, Y., Hopke, P. K., Ye, F., Gong, K., Mao, J., & Hu, J. (2023). Modeling PM2.5 During Severe Atmospheric Pollution Episode in Lagos, Nigeria: Spatiotemporal Variations, Source Apportionment, and Meteorological Influences. Geophys. Res.: Atmos., 128. https://doi.org/10.1029/2022JD038360
- Tariq, S., Mariam, A., Mehmood, U., & Ul-Haq, Z. (2023). Long term spatiotemporal trends and health risk assessment of remotely sensed PM2.5 concentrations in Nigeria. Pollut., 324, 121382. https://doi.org/10.1016/j.envpol.2023.121382
- Tchepel, O., Costa, A. M., Martins, H., Ferreira, J., Monteiro, A., Miranda, A. I., & Borrego, C. (2010). Determination of background concentrations for air quality models using spectral analysis and filtering of monitoring data. Environ., 44(1), 106–114. https://doi.org/10.1016/j.atmosenv.2009.08.038
- Venegas, L. E., & Mazzeo, N. A. (2006). Modelling of urban background pollution in Buenos Aires City (Argentina). Model Softw., 21(4), 577–586. https://doi.org/10.1016/j.envsoft.2004.08.013
- Wang, S., Hung, R., Lin, N., Gómez-Losada, Á., Pires, J. C., Shimada, K., … Takami, A. (2020). Estimation of background PM2.5 concentrations for an air-polluted environment. Res., 231, 104636.
- Wambebe, N. M., & Duan, X. (2020). Air Quality Levels and Health Risk Assessment of Particulate Matters in Abuja Municipal Area, Nigeria. Atmosphere, 11, 817. https://doi.org/10.3390/atmos11080817
- World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health. Retrieved from https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf
- Yap, K., & Chong, Y. (2017). Optimized access point selection with mobility prediction using hidden Markov Model for wireless network. 2017 Ninth Int. Conf. Ubiquitous Future Networks (ICUFN), 38-42. https://doi.org/10.1109/ICUFN.2017.7993744
Download all article in PDF