ABSTRACT
The electronic structure optimization, electronic band structure, density of states and orbital decomposition of the density of states has been computed for ZnGeP2, ZnGeAs2, and ZnSnP2. The computations were performed within the frame work of the density functional theory (DFT), using the pseudopotential method with projector augmented wave (PAW). The LDA+U technique was used for the computations. The result of the optimization was found to be in good agreement with experimental findings. The calculated result show that materials under investigation were semiconductors. From the finding of this research, ZnGeP2 has a direct band gap with a value of 1.52 eV, ZnGeAs2 has a direct band gap of 0.72 eV and ZnSnP2 gas an indirect band of about 1.91 eV. The calculated value of for ZnGeP2, ZnGeAs2, and ZnSnP2 are about 26, 40, and 9 respectively.
References
- Ohrendorf, F.W. & Haeuseler, H. Lattice Dynamics of Chalcopyrite type Compounds Part iv Calculations of TO Phonon Modes in a Reduced Rigid Ion Model. Res. Technol. (2000) 35, 569-578
- Koroleva, L.I.; Zashchirinskii, D.M.; Khapaeva, T.M.; Morozov, A.I. Manganese-doped CdGeAs2, ZnGeAs2 and ZnSiAs2 chalcopyrites: A new materials for spintronics. Journal of Magnetism and Magnetic Materials 323(23) (2011) 2923-2928. DOI:1016/j.jmmm.2011.05.054
- Glenn S Solomon and Michael L. Timmons and John B. Posthill. Organometallic vapor‐phase‐epitaxial growth and characterization of ZnGeAs2 on GaAs. Journal of Applied Physics 1998, 65, 1952-1956
- Morozov, A., Koroleva, L. I., Zashchirinskii, D.M., Khapaeva, T.M., Morozov, A.I., Marenkin, S.F., Fedorchenko, I.V., Szymczak, R.A, Kryzymanska, B. Solid State Phenom (2011), 168, 31
- Tell, B. Shay, J.L., Kasper, H.M. Electrical Properties, Optical Properties and Band Structure of CuGaSand CuLnS2. Phys RevB 4, (1971) 2463-2471
- Shay, J.L., Wernick, J.H. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications. Pergamon Press. New York (1975).
- Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K. Effect of cation substitution on electronic band structure of ZnGeAs2 pnictides : A mBJLDA approach. Alloy Compd (2014) 611, 210-218
- Shi, L.; Hu, J.; Qin, Y.; Duan, Y.; Wu, L.; Ynag, X.; Tang, G. Fist-Principles Study of Structural, Elastic and Lattice Dynamical Properties of Chalcopyite BeSiV2 and MgSiV2 (V=P, As, Sb). Alloy Compd. (2014) 611, 210-218
- Scholl, F.W., Tamg, C.L. NonLinear Optical Properties of II-IV-V2 Phys Rev B 8 (1973) 4607
- Rashkeev, S.N., Limpijumnong, S., Lambrecht, W.R.L. Second-Harmonic Generation and Birefringence of some Ternary Primitive Semiconductor. Rev. B 59 (1999). 2737-2748
- Sinclair, C.K. in proceedings of the 8th Int Symposium on High Energy Spin Physics edited by Heller, K.J. AIP Confr. Proc. (1989), 1412
- Shaposhnikor, V.L.; Krivosheeva, A.V.; Borisenko, V.E.; Lazzari, J.L.; Arnaud d’Avitaya, F. (2012). Ab initio modeling of the Structural, Electronic and Optical properties of AiiBivCv2 Semiconductors. Rev B 85, (2012) 205201
- Chiker, F.; Abber, B.; Bresson, S.; Khelifa, B.; Mathieu, C.; Tadjer, A (2004). The Reflectivity Spectra of ZnXP2(X=So, Ge, Sn) Compounds. J. Solid State Chem. Uti177 (II), 3859-3867
- Tripathy, S.K., Kumar, V. Electronic, Elastic and Optical Properties of ZnGeP2 Semiconductor under Hydrostatic Pressure. Sci Eng. B. 182 (2014) 52-58
- Zhang, S.R., Xie, L.H., Onyang, S.D., Chem, X.W., Song, K.H. Scr. (2015). Electronic structure, Chemical bonding and Optical properties of the non-linear optical crystal of ZnGeP2 by first principle calculations. Physica Scripta, 91 (1).
- Xie, H., Fang, S., Zhao, H., Xu, X., Ye, N., Zhang, W (2019) Quasi-particle effect on the linear and nonlinear Susceptibility of ZnGeP2.. RSC Adv, 9, 35771-35779
- Janotti, A.; Wei S.H.; Zhang, S.B.; Kurtz, S. Structural and Electronic Properties of ZnGeAs2. Rev. B. 63 (2001), 195210 – 1 – 195210 – 7
- St – Jean, P., Seryogin, G.A., Francoer, S (2010). Band gap of Sphalerite and Chalcopyrite phases of Epitaxial ZnSnP2. Phys. Lett 96, 231913
- Scanlon, D.O., Walsh, A. (2012) Band gap Engineering of ZnSnP2 for high efficiency Solar cells. Appl. Lett. 100, 251911
- Sahin, S., Yasemin, C. Kemal, C., Nurettin, K. (2012). First principle studies of Elastic, Electronic and Optical properties of Chalcopyrite Semiconductor ZnSnP2. J. Alloy. Compd, 529 (26), 1-7
- Xu, Y., Ao, Z.M., Zou, D.F., Nie, G.Z, Sheng, W., Yuan, D.W. (2015). Strain effects on the Electronic Structure of ZnSnP2 via modified Becke- Johnson Exchange Potential. General, Atomic and Solid State Phys. Phys Lett, A, 379 (5) 427 – 430.
- Sadhukhan, B.; Zhang, Y.; Ray, R.; van den Brink, J. First-principles calculation of shift current in chalcopyrite semiconductor ZnSnP2. Rev. Mater. 2020, 4, 064602
- Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., and Allan D.C., First-principles computation of material properties: the Abinit software project, Computational Materials Science 25, 478-492 (2002).
- Gonze X., Rignanese G.-M., Verstraete M., Beuken J.-M., Pouillon Y., Caracas R., Jollet F., Torrent M., Zerah G., Mikami M., Ghosez Ph., Veithen M., Raty J.-Y., Olevano V., Bruneval F., Reining L., Godby R., Onida G., Hamann D. R., and Allan D. C., A brief Introduction to the Abinit software package. Z. Kristallogr. 220, 558-562 (2005).
- Madelung O. (2004), Semiconductors: Data Hand book, Springer, 3rd
Download all article in PDF