ABSTRACT
In this study, a metal-organic framework (Zn4O(BDCA)3) was prepared with zinc nitrate and benzene-1,4-dicarboxylic acid to test its suitability as aqueous phase adsorbent of malachite green dye, a useful colorant and potential pollutant. The colourless crystals obtained from the synthetic procedure were subjected to infrared spectrophotometric analysis. Using five solutions with concentration range 10 50 mg/dm3, adsorption tests were conducted to determine the effect of concentration on the adsorption of malachite green. The test yielded the corresponding percentage adsorption values: 30.9, 47.9, 25.83, 30.6, and 21.88%, and adsorption capacity values: 0.025, 0.077, 0.062, 0.098 and 0.088 mg per gram of Zn4O(BDCA)3, with the adsorption capacity trend revealing increased adsorption of malachite green from solutions with higher malachite green concentrations. Langmuir and Freundlich modelling of the adsorption data gave R2 values (0.6663 and 0.6038 respectively) suggesting the simultaneous occurrence of monolayer and multilayer adsorption, as well as isotherm constants indicative of a poor adsorption performance by Zn4O(BDCA)3. Desorption tests conducted to determine the regenerability of Zn4O(BDCA)3 in six different reagents, sterile water, sterile water with pH adjusted to 2, sterile water with pH adjusted to 11, ethanol, methanol, and acetone, yielded percentage desorption values that suggested that desorption of malachite green from used Zn4O(BDCA)3 depended on pH and solvent polarity. The low pH desorbing medium (pH = 2) was the most effective desorption agent for the removal of malachite green from used Zn4O(BDCA)3. Further, the least polar solvent, among the water-like solvents utilized, desorbed the most amount. Acetone was only minimally effective as a desorption agent. A high pH desorbing medium (pH = 11) only moderately desorbed malachite green. The outcome of the study suggests that the zinc-based metal-organic framework, Zn4O(BDCA)3, may not be the most effective material for the removal of malachite green from water, however, it represents a highly regenerable and reusable material, which can as well be applied to recover malachite green from water.
References
- Ashraf, M. W.; Abulibdeh, N.; Salam, A. Selective Removal of Malachite Green Dye from Aqueous Solutions by Supported Liquid Membrane Technology. J. Environ. Res. Public. Health 2019, 16 (18), 3484. https://doi.org/10.3390/ijerph16183484
- Malachite Green. VEDANTU. https://www.vedantu.com/chemistry/malachite-green, https://www.vedantu.com/chemistry/malachite-green (accessed 2023-04-30).
- Li, Z.; Zhang, X.; Lin, J.; Han, S.; Lei, L. Azo Dye Treatment with Simultaneous Electricity Production in an Anaerobic–Aerobic Sequential Reactor and Microbial Fuel Cell Coupled System. Technol. 2010, 101 (12), 4440–4445. https://doi.org/10.1016/j.biortech.2010.01.114
- Raval, N. P.; Shah, P. U.; Shah, N. K. Malachite Green “a Cationic Dye” and Its Removal from Aqueous Solution by Adsorption. Water Sci. 2017, 7 (7), 3407–3445. https://doi.org/10.1007/s13201-016-0512-2
- Teixeira, Y. N.; Melo, R. P. F.; Fernandes, M. R.; Carmo, S. K. S.; Neto, E. L. B. Malachite Green Removal Using Ionic Flocculation. Water Pract. Technol. 2022, 17 (5), 1113–1128. https://doi.org/10.2166/wpt.2022.054
- Kurniawan, S. B.; Abdullah, S. R. S.; Imron, M. F.; Said, N. S. M.; Ismail, N. Izzati; Hasan, H. A.; Othman, A. R.; Purwanti, I. F. Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery. J. Environ. Res. Public. Health 2020, 17 (24), 9312. https://doi.org/10.3390/ijerph17249312
- Mittal, A. Adsorption Kinetics of Removal of a Toxic Dye, Malachite Green, from Wastewater by Using Hen Feathers. Hazard. Mater. 2006, 133 (1–3), 196–202. https://doi.org/10.1016/j.jhazmat.2005.10.017
- Alorabi, A. Q. Effective Removal of Malachite Green from Aqueous Solutions Using Magnetic Nanocomposite: Synthesis, Characterization, and Equilibrium Study. Sci. Technol. 2021, 2021, 1–15. https://doi.org/10.1155/2021/2359110
- Khattri, S. D.; Singh, M. K. Removal of Malachite Green from Dye Wastewater Using Neem Sawdust by Adsorption. Hazard. Mater. 2009, 167 (1–3), 1089–1094. https://doi.org/10.1016/j.jhazmat.2009.01.101
- Prabakaran, R.; Arivoli, S. Thermodynamic and Isotherm Analysis on the Removal of Malachite Green Dye Using Thespesia Populnea Bark. E-J. Chem. 2012, 9 (4), 2575–2588. https://doi.org/10.1155/2012/629089
- Lin, Y.-R.; Hu, Y.-F.; Huang, C.-Y.; Huang, H.-T.; Liao, Z.-H.; Lee, A.-T.; Wu, Y.-S.; Nan, F.-H. Removing Malachite Green and Leucomalachite Green From Freshwater and Seawater With Four Water Treatment Agents. Environ. Sci. 2022, 10, 906886. https://doi.org/10.3389/fenvs.2022.906886
- Rojas, S.; Horcajada, P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Rev. 2020, 120 (16), 8378–8415. https://doi.org/10.1021/acs.chemrev.9b00797
- Hussain, A., Ahmed, S., Eds.; Wang, Y., Series Ed.; Advances in Environmental Engineering and Green Technologies; IGI Global, https://doi.org/10.4018/978-1-5225-5754-8
- Fang, Q.-R.; Makal, T.; Young, M.; Zhou, H.-C. Recent Advances in the Study of Mesoporous Metal-Organic Frameworks. Comments Inorg. Chem. 2010, 31. https://doi.org/10.1080/02603594.2010.520254
- Zhang, X.; Lin, R.-B.; Wang, J.; Wang, B.; Liang, B.; Yildirim, T.; Zhang, J.; Zhou, W.; Chen, B. Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity. Mater. Deerfield Beach Fla 2020, 32 (17), e1907995. https://doi.org/10.1002/adma.201907995
- Elsherbiny, A. S.; Rady, A.; Abdelhameed, R. M.; Gemeay, A. H. Efficiency and Selectivity of Cost-Effective Zn-MOF for Dye Removal, Kinetic and Thermodynamic Approach. Sci. Pollut. Res. 2023. https://doi.org/10.1007/s11356-023-25919-4
- Delpiano, G. R.; Tocco, D.; Medda, L.; Magner, E.; Salis, A. Adsorption of Malachite Green and Alizarin Red S Dyes Using Fe-BTC Metal Organic Framework as Adsorbent. J. Mol. Sci. 2021, 22 (2), 788. https://doi.org/10.3390/ijms22020788.
- Beydaghdari, M.; Hooriabad Saboor, F.; Babapoor, A.; Karve, V.; Asgari, M. Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment. Energies 2022, 15 (6), 2023. https://doi.org/10.3390/en15062023
- Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular Synthesis and the Design of New Materials. Nature 2003, 423 (6941), 705–714. https://doi.org/10.1038/nature01650
- Tapiador, J.; Leo, P.; Rodríguez-Diéguez, A.; Choquesillo-Lazarte, D.; Calleja, G.; Orcajo, G. A Novel Zn-Based-MOF for Efficient CO2 Adsorption and Conversion under Mild Conditions. Today 2022, 390–391, 230–236. https://doi.org/10.1016/j.cattod.2021.11.025
- Clausen, H. F.; Poulsen, R. D.; Bond, A. D.; Chevallier, M.-A. S.; Iversen, B. B. Solvothermal Synthesis of New Metal Organic Framework Structures in the Zinc–Terephthalic Acid–Dimethyl Formamide System. Solid State Chem. 2005, 178 (11), 3342–3351. https://doi.org/10.1016/j.jssc.2005.08.013
- Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Single, Binary and Multi-Component Adsorption of Some Anions and Heavy Metals on Environmentally Friendly Carpobrotus Edulis Plant. Colloids Surf. B Biointerfaces 2011, 82 (2), 267–276. https://doi.org/10.1016/j.colsurfb.2010.09.013
- Wei, F.; Chen, D.; Liang, Z.; Zhao, S.; Luo, Y. Synthesis and Characterization of Metal–Organic Frameworks Fabricated by Microwave-Assisted Ball Milling for Adsorptive Removal of Congo Red from Aqueous Solutions. RSC Adv 2017, 7 (73), 46520–46528. https://doi.org/10.1039/C7RA09243A
- Christina, L. C.; Gunlazuardi, J.; Zulys, A. Synthesis and Characterization of Lanthanide Metal-Organic Framework with Perylene 3,4,9,10-Tetracarboxylate Ligand. IOP Conf. Ser. Mater. Sci. Eng. 2020, 902 (1), 012046. https://doi.org/10.1088/1757-899X/902/1/012046
- Ukachuku, S.; Dikio, D. E. Aqueous Sequestration of Lead Ions by Zn-Based Metal-Organic Framework (MOF5): Equilibrium, Kinetics, and PH Studies. Worl News Nat. Sci. 2023, 49 (2023), 1–13
- Ukachuku, S.; Abasi, C. Y. Solid-Liquid Sorption Studies of Ni, Cd, and Pb on Unmodified and Modified Avocado Pea Seed. Appl. Sci. 2021, 7 (2), 23–28. https://doi.org/10.5281/ZENODO.5823184
Download all article in PDF