ABSTRACT
This review paper explores the role of predictive analytics in managing chronic diseases among aging populations, a demographic increasingly burdened by complex health challenges. As healthcare systems strive to enhance patient outcomes, predictive analytics offers powerful tools to identify at-risk individuals, forecast disease progression, and personalize treatment strategies. This paper examines the current applications of predictive models in managing chronic conditions such as diabetes, cardiovascular diseases, and Alzheimer’s, highlighting the advantages of early intervention and proactive care. The review addresses key challenges, including interoperability issues, data privacy concerns, algorithmic bias, and resistance to change among healthcare providers. Ethical considerations surrounding the use of predictive analytics are discussed, emphasizing the importance of transparency and patient engagement. The paper concludes with recommendations for improving the integration of predictive analytics in chronic disease management, including investments in technology infrastructure, enhanced education for healthcare professionals, and ongoing monitoring of predictive models. By effectively leveraging predictive analytics, healthcare systems can move toward a more personalized and preventive approach, ultimately improving the health and quality of life for aging populations facing chronic diseases.
References
- [1] Ahmed, I., Ahmad, M., Jeon, G., & Piccialli, F. (2021). A framework for pandemic prediction using big data analytics. Big Data Research, 25, 100190.
- [2] Aldahiri, A., Alrashed, B., & Hussain, W. (2021). Trends in using IoT with machine learning in health prediction system. Forecasting, 3(1), 181-206.
- [3] Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., . . . Badreldin, H. A. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC medical education, 23(1), 689.
- [4] Ameen, S., Wong, M.-C., Yee, K.-C., & Turner, P. (2022). AI and clinical decision making: the limitations and risks of computational reductionism in bowel cancer screening. Applied Sciences, 12(7), 3341.
- [5] Aminizadeh, S., Heidari, A., Dehghan, M., Toumaj, S., Rezaei, M., Navimipour, N. J., . . . Unal, M. (2024). Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artificial Intelligence in Medicine, 149, 102779.
- [6] Badawy, M., Ramadan, N., & Hefny, H. A. (2023). Healthcare predictive analytics using machine learning and deep learning techniques: a survey. Journal of Electrical Systems and Information Technology, 10(1), 40.
- [7] Bardhan, I., Chen, H., & Karahanna, E. (2020). Connecting systems, data, and people: A multidisciplinary research roadmap for chronic disease management. MIS Quarterly, 44(1).
- [8] Bikman, B. (2020). Why We Get Sick: The Hidden Epidemic at the Root of Most Chronic Disease–and how to Fight it: BenBella Books.
- [9] Burd, A., Levine, R. L., Ruppert, A. S., Mims, A. S., Borate, U., Stein, E. M., . . . Deininger, M. (2020). Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. Nature medicine, 26(12), 1852-1858.
- Cadet, E., Osundare, O. S., Ekpobimi, H. O., Samira, Z., & Wondaferew, Y. (2024). AI-powered threat detection in surveillance systems: A real-time data processing framework.
- Craig, K. J. T., Fusco, N., Gunnarsdottir, T., Chamberland, L., Snowdon, J. L., & Kassler, W. J. (2021). Leveraging data and digital health technologies to assess and impact social determinants of health (SDoH): a state-of-the-art literature review. Online Journal of Public Health Informatics, 13(3).
- Dritsas, E., & Trigka, M. (2023). Efficient data-driven machine learning models for cardiovascular diseases risk prediction. Sensors, 23(3), 1161.
- Ehrman, J. K., Gordon, P. M., Visich, P. S., & Keteyian, S. J. (2023). Clinical exercise physiology: exercise management for chronic diseases and special populations: Human Kinetics.
- Enahoro, Q. E., Ogugua, J. O., Anyanwu, E. C., Akomolafe, O., Odilibe, I. P., & Daraojimba, A. I. (2024). The impact of electronic health records on healthcare delivery and patient outcomes: A review. World Journal of Advanced Research and Reviews, 21(2), 451-460.
- Foo, K. M., Sundram, M., & Legido-Quigley, H. (2020). Facilitators and barriers of managing patients with multiple chronic conditions in the community: a qualitative study. BMC public health, 20, 1-15.
- Fox, I., Lee, J., Pop-Busui, R., & Wiens, J. (2020). Deep reinforcement learning for closed-loop blood glucose control. Paper presented at the Machine Learning for Healthcare Conference.
- Golas, S. B., Nikolova-Simons, M., Palacholla, R., op den Buijs, J., Garberg, G., Orenstein, A., & Kvedar, J. (2021). Predictive analytics and tailored interventions improve clinical outcomes in older adults: a randomized controlled trial. NPJ digital medicine, 4(1), 97.
- Higgins, V., Sohaei, D., Diamandis, E. P., & Prassas, I. (2021). COVID-19: from an acute to chronic disease? Potential long-term health consequences. Critical reviews in clinical laboratory sciences, 58(5), 297-310.
- Hood, L., & Price, N. (2023). The Age of Scientific Wellness: Why the Future of Medicine Is Personalized, Predictive, Data-Rich, and in Your Hands: Harvard University Press.
- Hossain, M. E., Uddin, S., & Khan, A. (2021). Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. Expert Systems with Applications, 164, 113918.
- Igwama, G. T., Olaboye, J. A., Cosmos, C., Maha, M. D. A., & Abdul, S. (2024). AI-Powered Predictive Analytics in Chronic Disease Management: Regulatory and Ethical Considerations.
- Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., . . . Snowdon, J. L. (2021). Precision medicine, AI, and the future of personalized health care. Clinical and translational science, 14(1), 86-93.
- Librenza-Garcia, D., Passos, I. C., Feiten, J. G., Lotufo, P. A., Goulart, A. C., de Souza Santos, I., . . . Brunoni, A. R. (2021). Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study. Psychological Medicine, 51(16), 2895-2903.
- Lorig, K., Laurent, D., Gonzalez, V., Sobel, D., & Minor, M. (2020). Living a healthy life with chronic conditions: Self-management skills for heart disease, arthritis, diabetes, depression, asthma, bronchitis, emphysema and other physical and mental health conditions: Bull Publishing.
- Mertler, C. A., Vannatta, R. A., & LaVenia, K. N. (2021). Advanced and multivariate statistical methods: Practical application and interpretation: Routledge.
- Nwadiugwu, M. C. (2021). Multi-morbidity in the older person: an examination of polypharmacy and socioeconomic status. Frontiers in public health, 8, 582234.
- Okoduwa, I. O., Ashiwaju, B. I., Ogugua, J. O., Arowoogun, J. O., Awonuga, K. F., & Anyanwu, E. C. (2024). Reviewing the progress of cancer research in the USA. World Journal of Biology Pharmacy and Health Sciences, 17(2), 068-079.
- Olorunyomi, T. D., Sanyaolu, T. O., Adeleke, A. G., & Okeke, I. C. (2024). Integrating FinOps in healthcare for optimized financial efficiency and enhanced care.
- Organization, W. H. (2021). Decade of healthy ageing: baseline report: World Health Organization.
- Oyeniran, C., Adewusi, A. O., Adeleke, A. G., Akwawa, L. A., & Azubuko, C. F. (2022). Ethical AI: Addressing bias in machine learning models and software applications. Computer Science & IT Research Journal, 3(3), 115-126.
- Pelluru, K. (2020). Prospects and Challenges of Big Data Analytics in Medical Science. Journal of Innovative Technologies, 3(1), 1− 18-11− 18.
- Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of best practices for evidence for prediction: a review. JAMA psychiatry, 77(5), 534-540.
- Razzak, M. I., Imran, M., & Xu, G. (2020). Big data analytics for preventive medicine. Neural Computing and Applications, 32(9), 4417-4451.
- Rudnicka, E., Napierała, P., Podfigurna, A., Męczekalski, B., Smolarczyk, R., & Grymowicz, M. (2020). The World Health Organization (WHO) approach to healthy ageing. Maturitas, 139, 6-11.
- Sanyaolu, T. O., Adeleke, A. G., Efunniyi, C., Azubuko, C., & Osundare, O. (2024). Harnessing blockchain technology in banking to enhance financial inclusion, security, and transaction efficiency. International Journal of Scholarly Research in Science and Technology, August, 5(01), 035-053.
World Scientific News 204 (2025) 170-170
- Serradilla, O., Zugasti, E., Rodriguez, J., & Zurutuza, U. (2022). Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects. Applied Intelligence, 52(10), 10934-10964.
- Silva-Spínola, A., Baldeiras, I., Arrais, J. P., & Santana, I. (2022). The road to personalized medicine in Alzheimer’s disease: the use of artificial intelligence. Biomedicines, 10(2), 315.
- Skou, S. T., Mair, F. S., Fortin, M., Guthrie, B., Nunes, B. P., Miranda, J. J., . . . Smith, S. M. (2022). Multimorbidity. Nature Reviews Disease Primers, 8(1), 48.
- Udegbe, F. C., Ebulue, O. R., Ebulue, C. C., & Ekesiobi, C. S. (2024). The role of artificial intelligence in healthcare: A systematic review of applications and challenges. International Medical Science Research Journal, 4(4), 500-508.
- Wang, S., & Zhu, X. (2021). Predictive modeling of hospital readmission: challenges and solutions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(5), 2975-2995.
- Weir, R. C., Proser, M., Jester, M., Li, V., Hood-Ronick, C. M., & Gurewich, D. (2020). Collecting social determinants of health data in the clinical setting: findings from national PRAPARE implementation. Journal of Health Care for the Poor and Underserved, 31(2), 1018-1035.
- Zhu, T., Kuang, L., Daniels, J., Herrero, P., Li, K., & Georgiou, P. (2022). IoMT-enabled real-time blood glucose prediction with deep learning and edge computing. IEEE Internet of Things Journal, 10(5), 3706-3719.
Download all article in PDF
![]()



