

World Scientific News

An International Scientific Journal

WSN 204 (2025) 159-170

EISSN 2392-2192

A Review of Predictive Analytics in Managing Chronic Diseases in Aging Populations

**Charles Elachi Apeh¹, Maria Theresa Chinyeaka Kelvin-Agwu², Ashiata Yetunde Mustapha³
ADELAIDE YEBOAH FORKUO⁴ Tolulope Olagoke Kolawole⁵**

¹Independent Researcher, UK

²Independent Researcher, Bolton, Greater Manchester, United Kingdom

realmaria.kelvin@gmail.com

³ Kwara State Ministry of Health, Nigeria

mustaphaashiata@gmail.com

⁴Independent Researcher, USA

ayeboahforkuo@gmail.com

⁵Independent Researcher, Richmond, Virginia, United States of America

tolukolawole2020@gmail.com

ABSTRACT

This review paper explores the role of predictive analytics in managing chronic diseases among aging populations, a demographic increasingly burdened by complex health challenges. As healthcare systems strive to enhance patient outcomes, predictive analytics offers powerful tools to identify at-risk individuals, forecast disease progression, and personalize treatment strategies. This paper examines the current applications of predictive models in managing chronic conditions such as diabetes, cardiovascular diseases, and Alzheimer's, highlighting the advantages of early intervention and proactive care. The review addresses key challenges, including interoperability issues, data privacy concerns, algorithmic bias, and resistance to change among healthcare providers.

(Received 12 April 2025; Accepted 18 May 2025; Date of Publication 6 June 2025)

Ethical considerations surrounding the use of predictive analytics are discussed, emphasizing the importance of transparency and patient engagement. The paper concludes with recommendations for improving the integration of predictive analytics in chronic disease management, including investments in technology infrastructure, enhanced education for healthcare professionals, and ongoing monitoring of predictive models. By effectively leveraging predictive analytics, healthcare systems can move toward a more personalized and preventive approach, ultimately improving the health and quality of life for aging populations facing chronic diseases.

Keywords: Predictive analytics, Chronic diseases, Aging populations, Healthcare technology, Data privacy, Ethical considerations.

1. INTRODUCTION

The aging global population poses significant healthcare challenges, especially in managing chronic diseases. According to the World Health Organization (WHO), the number of people aged 60 and older is expected to rise from 1 billion in 2020 to 2.1 billion by 2050 (Organization, 2021). With age comes a higher prevalence of chronic illnesses such as diabetes, cardiovascular diseases, Alzheimer's disease, and arthritis. These conditions are often long-term, requiring continuous management rather than cures. The sheer complexity of managing these diseases is compounded by factors like polypharmacy (the simultaneous use of multiple medications), reduced mobility, and the need for personalized care (Bikman, 2020). Healthcare systems, already strained by rising costs and limited resources, face an additional burden in providing effective, ongoing care for elderly patients with chronic conditions (Rudnicka et al., 2020).

Managing chronic diseases in aging populations also presents several practical challenges. The first is early detection. Many chronic conditions in older adults progress gradually and may remain undiagnosed until symptoms become severe. By the time conditions like cardiovascular disease or diabetes are diagnosed, significant damage may already have occurred, making management more complicated and costly (Bardhan, Chen, & Karahanna, 2020). Another issue is adherence to treatment plans, which becomes challenging for older adults due to memory decline, physical limitations, or a lack of understanding of medical instructions. Finally, healthcare disparities—such as limited access to quality healthcare, especially in rural areas—further complicate the management of chronic diseases among the elderly (Ehrman, Gordon, Visich, & Keteyian, 2023).

Predictive analytics has emerged as a crucial tool in healthcare, particularly in managing chronic diseases. It uses historical data, statistical algorithms, and machine learning techniques to predict future outcomes based on patterns observed in the past (Aldahiri, Alrashed, & Hussain, 2021). In the context of healthcare, predictive analytics allows professionals to forecast disease progression, identify patients at higher risk of developing chronic conditions, and optimize treatment plans. For aging populations, the potential of predictive analytics is transformative, as it enables earlier interventions and more personalized care, potentially reducing the burden of chronic diseases on both patients and healthcare systems (Badawy, Ramadan, & Hefny, 2023).

Predictive models can help identify which patients are most likely to develop specific chronic diseases based on genetic, behavioral, and environmental factors. For instance, by analyzing large datasets from electronic health records (EHRs), wearable devices, and genetic profiles, healthcare providers can predict whether a patient is at a higher risk of developing conditions like heart disease or diabetes. This information is vital for implementing preventive measures or tailored treatment strategies before the condition becomes severe (Librenza-Garcia et al., 2021).

Moreover, predictive analytics supports healthcare providers in making more informed decisions. It can help physicians determine which treatments are likely to be most effective for specific patients, considering their individual health history, lifestyle, and genetic makeup. In turn, this reduces trial-and-error approaches in treatment, improving patient outcomes and optimizing the use of healthcare resources. In the context of chronic disease management, predictive analytics offers a way to anticipate complications, reduce hospital readmissions, and ensure better continuity of care, which is particularly beneficial for elderly patients who may have multiple comorbidities (Johnson et al., 2021).

This paper aims to explore the current applications of predictive analytics in managing chronic diseases in aging populations, highlighting both the opportunities and challenges it presents. The review will focus on how predictive models are used to identify disease risks, tailor interventions, and improve the quality of life for older adults living with chronic conditions. By examining the role of data-driven decision-making in healthcare, the paper will also consider the ethical and practical barriers to the widespread adoption of predictive analytics, particularly concerning privacy and the accuracy of predictions.

2. THE ROLE OF PREDICTIVE ANALYTICS IN HEALTHCARE

2.1. Predictive Analytics and Its Relevance to Chronic Disease Management

Predictive analytics is a branch of advanced analytics that uses current and historical data to forecast future events. It is an essential tool in healthcare that helps practitioners anticipate disease progression, manage patient outcomes, and optimize treatment strategies (Ahmed, Ahmad, Jeon, & Piccialli, 2021). Predictive analytics relies on vast datasets, statistical algorithms, and machine learning to identify patterns and predict outcomes based on historical data. This predictive capability is invaluable for chronic disease management, particularly in aging populations, because it allows healthcare providers to intervene before conditions worsen, optimizing care and resource allocation (Razzak, Imran, & Xu, 2020).

Chronic diseases, such as heart disease, diabetes, and respiratory illnesses, are long-term health conditions that require continuous monitoring and management. As people age, the risk of developing these conditions increases due to genetic, lifestyle, and environmental factors (Lorig, Laurent, Gonzalez, Sobel, & Minor, 2020). Traditional healthcare approaches typically focus on reacting to symptoms as they arise, but predictive analytics shifts this paradigm by allowing healthcare professionals to proactively identify patients who are at high risk for chronic diseases. This anticipatory approach is critical in managing chronic diseases because many such conditions can significantly reduce complications, hospitalizations, and healthcare costs if caught early or managed effectively (Higgins, Sohæi, Diamandis, & Prassas, 2021).

Moreover, the aging population faces unique health challenges such as polypharmacy (the use of multiple medications), multimorbidity (the presence of multiple chronic conditions), and functional decline. Predictive analytics helps navigate these complexities by providing data-driven insights that aid in tailoring treatment plans to the needs of each patient (Skou et al., 2022). This is particularly important in chronic disease management, where individualized care can make the difference between effective management and poor health outcomes. Thus, predictive analytics is becoming essential in chronic disease management, offering a pathway toward more efficient, targeted, and preventive healthcare (Nwadiugwu, 2021).

2.2. Key Technologies and Tools Used in Predictive Analytics for Healthcare

Predictive analytics in healthcare leverages various technologies and tools to gather, analyze, and interpret data. The backbone of predictive analytics lies in the vast quantities of data generated from different sources, such as electronic health records (EHRs), patient monitoring devices, wearable technologies, and genetic data. These data streams are processed using machine learning algorithms, which can identify patterns and correlations that would be impossible for humans to detect on their own.

One of the key technologies driving predictive analytics is machine learning (ML), a type of artificial intelligence (AI) that allows computers to learn from data without explicit programming. Machine learning models are capable of processing large amounts of patient data, including medical history, treatment records, and laboratory results, to make accurate predictions about disease progression, potential risks, and optimal treatment plans. For instance, in diabetes management, machine learning algorithms can analyze continuous glucose monitoring data to predict blood sugar spikes, allowing for real-time adjustments in diet or insulin dosage (Zhu et al., 2022).

Another important tool is natural language processing (NLP), which enables computers to understand and interpret human language. NLP is particularly useful in predictive analytics because it can extract valuable information from unstructured data sources, such as clinical notes or patient narratives in EHRs. This helps healthcare providers gain a more comprehensive understanding of a patient's health status and potential risks (Cadet, Osundare, Ekpobimi, Samira, & Wondaferew, 2024; Igwama, Olaboye, Cosmos, Maha, & Abdul, 2024).

Additionally, big data analytics plays a pivotal role in predictive healthcare. Big data platforms allow for the aggregation and analysis of enormous volumes of healthcare data, integrating information from disparate sources to create a holistic view of a patient's health. This comprehensive dataset enables more accurate predictions of disease risk and progression. Wearable technologies also contribute significantly to predictive analytics. Devices such as smartwatches and fitness trackers collect real-time health metrics—like heart rate, activity level, and sleep patterns—that can be fed into predictive models to monitor chronic conditions and flag potential health concerns before they become severe (Fox, Lee, Pop-Busui, & Wiens, 2020).

These tools are complemented by cloud computing and data visualization technologies, which provide the infrastructure for storing and analyzing large datasets and presenting predictions in a user-friendly format for clinicians. By using cloud computing, healthcare organizations can access advanced predictive tools without the need for on-site hardware, making these technologies more accessible.

2.3. Advantages of Predictive Analytics in Predicting Disease Progression, Risk Factors, and Treatment Outcomes

The application of predictive analytics in healthcare offers numerous advantages, particularly in managing chronic diseases in aging populations. One of the most significant benefits is its ability to forecast disease progression, which allows healthcare providers to intervene before a condition worsens. For example, predictive models can analyze patient data in managing cardiovascular disease—including blood pressure, cholesterol levels, and genetic markers—to predict the likelihood of a heart attack or stroke. This enables clinicians to implement preventive measures such as lifestyle modifications, medications, or surgeries, reducing the risk of severe outcomes (Oyeniran, Adewusi, Adeleke, Akwawa, & Azubuko, 2022; Sanyaolu, Adeleke, Efunniyi, Azubuko, & Osundare, 2024).

Predictive analytics also excels in identifying risk factors for chronic diseases. Many chronic conditions develop slowly over time, often without noticeable symptoms, until they reach an advanced stage. By analyzing large datasets, predictive models can pinpoint individuals who are at high risk of developing diseases based on genetic predispositions, lifestyle choices, and environmental factors. For instance, predictive tools can assess the risk of Type 2 diabetes by evaluating factors such as obesity, family history, and physical activity levels. Armed with this information, healthcare providers can offer personalized preventive interventions, such as diet and exercise programs, to delay or even prevent the onset of the disease (Hood & Price, 2023).

Another key advantage of predictive analytics is its ability to optimize treatment outcomes. By analyzing patient-specific data, predictive models can suggest the most effective treatments based on the patient's unique health profile. This is particularly important in aging populations, where patients may have multiple chronic conditions that require complex management. Predictive models can help determine the most effective treatments, thereby reducing the risk of adverse reactions or drug interactions. For example, in the treatment of hypertension, predictive analytics can analyze how patients with similar profiles responded to different medications, allowing doctors to choose the most effective treatment plan for a particular individual (Burd et al., 2020).

Predictive analytics also plays a critical role in reducing hospital readmissions, which are a significant issue in chronic disease management. By predicting which patients are at high risk for complications after discharge, healthcare providers can implement more intensive follow-up care, reducing the likelihood of readmission. This improves patient outcomes and alleviates the strain on healthcare systems, particularly in managing the growing elderly population (Wang & Zhu, 2021).

Furthermore, predictive analytics facilitates personalized care. Traditional approaches to chronic disease management often follow generalized treatment protocols, but predictive analytics allows for a more tailored approach. By analyzing a patient's entire health history, predictive models can recommend treatments and interventions that are specific to the individual, taking into account factors such as comorbidities, genetics, and lifestyle. This personalized approach improves health outcomes and enhances the patient's quality of life by offering more effective and less invasive treatment options (Golas et al., 2021).

3. APPLICATION OF PREDICTIVE ANALYTICS IN MANAGING CHRONIC DISEASES

3.1. Predictive Models Used for Specific Chronic Diseases

Predictive analytics has found significant applications in managing various chronic diseases, each requiring tailored approaches due to their unique pathophysiologies and patient demographics. One of the most prominent areas of application is in diabetes management. Predictive models for diabetes often utilize data from continuous glucose monitoring devices, patient demographics, lifestyle factors, and medical histories to forecast blood glucose levels and potential complications. For instance, machine learning algorithms can analyze patterns in glucose fluctuations to predict hypoglycemic episodes, allowing healthcare providers to adjust treatment plans proactively (Dritsas & Trigka, 2023).

Cardiovascular diseases (CVDs) are another critical area in which predictive analytics has made substantial contributions. Predictive models in CVD focus on identifying risk factors such as hypertension, cholesterol levels, smoking status, and family history. Algorithms can analyze electronic health records (EHRs) to stratify patients based on their risk of experiencing heart attacks or strokes.

For example, the Framingham Risk Score is a traditional model that estimates the 10-year cardiovascular risk of an individual based on their clinical data. However, modern machine learning models can integrate a broader range of variables, offering more accurate predictions and enabling timely interventions (Hossain, Uddin, & Khan, 2021).

Alzheimer's disease and other dementias represent another critical application of predictive analytics. Early detection is essential in managing these conditions, as interventions are most effective in the initial stages. Predictive models can analyze cognitive test scores, neuroimaging data, genetic markers, and lifestyle factors to identify individuals at high risk of developing Alzheimer's. For instance, the use of machine learning algorithms on brain imaging data has shown promise in predicting the onset of dementia up to five years before clinical symptoms appear. This allows for early interventions that can slow cognitive decline, significantly impacting patient quality of life (Silva-Spínola, Baldeiras, Arrais, & Santana, 2022).

The aging population presents unique challenges in chronic disease management, necessitating tailored predictive models. As individuals age, they often experience multimorbidity, complicating disease management and treatment plans. Predictive models designed for older adults take into account not just single diseases but also the interplay between multiple chronic conditions. For example, models that predict cardiovascular events in elderly patients must consider factors like mobility limitations, cognitive function, and polypharmacy, as the presence of multiple medications can lead to adverse interactions (Foo, Sundram, & Legido-Quigley, 2020).

Moreover, aging populations often present different risk factors compared to younger populations. Predictive models must adapt to include age-specific variables such as frailty, changes in metabolism, and the presence of geriatric syndromes (e.g., falls, incontinence). For instance, models that predict the risk of hospitalization in older adults may incorporate functional status assessments alongside traditional clinical indicators. These adaptations ensure that predictive analytics remains relevant and effective in addressing the complexities of chronic disease management in aging populations (Craig et al., 2021).

Additionally, predictive models must consider social determinants of health, which play a crucial role in the well-being of older adults. Factors such as socioeconomic status, access to healthcare, and support systems can significantly influence health outcomes. Tailoring models to include these determinants can enhance their predictive accuracy and provide a more comprehensive view of a patient's health status. By integrating social determinants into predictive analytics, healthcare providers can better identify at-risk populations and allocate resources more effectively (Weir et al., 2020).

4. CHALLENGES AND ETHICAL CONSIDERATIONS

4.1. Barriers to the Adoption of Predictive Analytics in Aging Populations' Healthcare

The integration of predictive analytics into healthcare for aging populations presents several challenges that hinder its widespread adoption. One significant barrier is the lack of interoperability among health information systems. Many healthcare providers utilize different electronic health record (EHR) systems that do not communicate effectively with one another. This fragmentation leads to incomplete datasets, making it difficult for predictive models to analyze comprehensive patient information accurately. Without access to holistic data, predictive analytics may yield inaccurate predictions, undermining their effectiveness and trustworthiness (Enahoro et al., 2024; Olorunyomi, Sanyaolu, Adeleke, & Okeke, 2024).

Additionally, the cost of implementing predictive analytics is a formidable obstacle, particularly for smaller healthcare facilities and practices. Establishing the necessary technological infrastructure, including software, hardware, and training personnel, can be prohibitively expensive. Many organizations, especially in rural or underserved areas, may lack the financial resources to invest in advanced analytics tools. This economic disparity can exacerbate existing inequalities in healthcare access and outcomes for aging populations (Pelluru, 2020).

Furthermore, there exists a general resistance to change within the healthcare sector, particularly among older healthcare professionals who may be accustomed to traditional methods of patient care. Some practitioners may be skeptical of the reliability of predictive analytics, questioning the value of algorithms in comparison to their clinical judgment. This skepticism can hinder the willingness of healthcare providers to adopt new technologies, slowing the integration of predictive analytics into routine practice (Aminizadeh et al., 2024).

Another challenge lies in the data literacy of healthcare providers and stakeholders. Effective use of predictive analytics requires a certain level of understanding of statistical concepts and data interpretation. Many healthcare professionals may not have received adequate training in data analytics during their education, limiting their ability to utilize these tools effectively. As predictive analytics becomes increasingly integral to patient care, addressing the gap in data literacy will be crucial for successful implementation (Mertler, Vannatta, & LaVenia, 2021).

4.2. Issues Related to Data Privacy, Accuracy, and Bias in Predictive Models

As predictive analytics relies heavily on data collection, significant concerns arise regarding data privacy. Protecting patient information is paramount, especially considering the sensitive nature of health data. The Health Insurance Portability and Accountability Act (HIPAA) in the United States sets strict regulations regarding using and sharing personal health information. However, the integration of predictive analytics often involves aggregating data from multiple sources, raising the potential for breaches in confidentiality. Patients may be reluctant to share their data if they fear it could be mishandled or misused, which can limit the effectiveness of predictive models (Okoduwa et al., 2024).

Another pressing issue is the accuracy of predictive models. While predictive analytics can provide valuable insights, the models are only as good as the data they are built upon. Inaccurate, incomplete, or outdated data can lead to faulty predictions and misdiagnoses or inappropriate treatment plans. This is particularly concerning in aging populations, where patients may have complex medical histories that need to be carefully considered. Ensuring data accuracy requires ongoing validation and refinement of predictive algorithms and continuous monitoring of their performance in real-world settings (Serradilla, Zugasti, Rodriguez, & Zurutuza, 2022).

Bias in predictive models is another critical concern. Suppose the data used to develop predictive algorithms is not representative of the diverse populations they aim to serve. In that case, the resulting predictions may be skewed. For instance, if a model is primarily trained on data from younger, healthier populations, it may not accurately predict outcomes for older adults with multiple comorbidities. Such biases can exacerbate health disparities and lead to unequal treatment for vulnerable populations. Addressing bias in predictive analytics requires conscious efforts to include diverse data sources, ensuring that models reflect the complexities of aging populations (Poldrack, Huckins, & Varoquaux, 2020).

4.3. Ethical Implications of Using Predictive Analytics in Patient Care

The application of predictive analytics in patient care raises various ethical implications that must be carefully navigated. One primary concern is the potential for discrimination based on the predictions generated by algorithms. Suppose predictive models are used to determine eligibility for treatments or insurance coverage. In that case, there is a risk that certain groups, particularly older adults or those with multiple chronic conditions, may be unfairly disadvantaged. Ethical frameworks must be established to ensure that predictive analytics enhances care rather than perpetuate inequalities.

Moreover, relying on algorithms in clinical decision-making can diminish human judgment's role in patient care. While predictive analytics can provide valuable insights, it should not replace the clinical expertise and compassion that healthcare providers bring to their practice. There is a danger that providers may over-rely on algorithms, potentially overlooking individual patient needs and preferences. Ethical practice necessitates a balanced approach, where predictive analytics is used as a tool to inform, rather than dictate, clinical decisions (Alowais et al., 2023).

Another ethical consideration is patients' informed consent regarding using their data in predictive analytics. Patients should be made aware of how their data will be utilized, the potential risks involved, and the measures to protect their privacy. Informed consent is a cornerstone of ethical medical practice, and transparent communication about data usage is crucial in fostering trust between patients and healthcare providers (Udegbe, Ebule, Ebule, & Ekesiobi, 2024).

Lastly, there is a need for ongoing monitoring and evaluation of predictive analytics systems to ensure they are functioning as intended and delivering equitable outcomes. Regular audits of predictive models can help identify biases or inaccuracies, enabling timely adjustments. Ethical oversight committees can play a vital role in assessing the impact of predictive analytics on patient care and addressing any emerging ethical concerns (Ameen, Wong, Yee, & Turner, 2022).

5. CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

This review highlights the transformative potential of predictive analytics in managing chronic diseases among aging populations. As healthcare systems face increasing challenges associated with an aging demographic, predictive analytics offers innovative solutions to enhance patient outcomes. Through the analysis of patient data, predictive models can identify individuals at risk, forecast disease progression, and personalize treatment plans. This proactive approach enables healthcare providers to intervene earlier, improving the quality of care for older adults suffering from chronic conditions such as diabetes, cardiovascular diseases, and dementia.

However, the integration of predictive analytics is not without challenges. Barriers such as interoperability issues among healthcare information systems, the high costs of implementation, and resistance to change hinder its adoption. Additionally, concerns regarding data privacy, accuracy, and algorithmic bias raise ethical questions that must be addressed to maintain trust and ensure equitable care. Furthermore, the need for data literacy among healthcare professionals emphasizes the importance of effective training and education in utilizing these advanced tools.

5.2. Recommendations

Several recommendations can be made to enhance the integration of predictive analytics in managing chronic diseases among aging populations. First, investments in technology infrastructure are crucial. Healthcare organizations should prioritize interoperability among EHR systems to facilitate seamless data sharing. By establishing standardized data formats and protocols, providers can ensure comprehensive datasets that enhance the predictive capabilities of analytics. Public and private partnerships can also help reduce the financial burden on smaller healthcare facilities, enabling them to adopt predictive analytics tools.

Second, education and training programs for healthcare providers are essential. These programs should focus on developing data literacy skills, allowing clinicians to effectively interpret and utilize predictive analytics. By fostering an understanding of statistical concepts and data-driven decision-making, healthcare professionals can better leverage predictive models in their practice. Moreover, incorporating training on ethical considerations and bias awareness will enable providers to use analytics responsibly and equitably.

Third, enhancing patient engagement is critical to successfully implementing predictive analytics. Patients should be informed about how their data will be used and the potential benefits of predictive analytics in their care. Building trust through transparent communication can empower patients to participate actively in their healthcare decisions. Furthermore, involving patients in the development of predictive models can help ensure that the algorithms reflect their unique needs and preferences, leading to more personalized care.

Additionally, ongoing evaluation and monitoring of predictive models are necessary to ensure their accuracy and effectiveness. Regular audits should be conducted to assess the performance of algorithms, identify biases, and make necessary adjustments. Establishing ethical oversight committees can facilitate this process, ensuring that predictive analytics serves to enhance, rather than detract from, patient care.

References

- [1] Ahmed, I., Ahmad, M., Jeon, G., & Piccialli, F. (2021). A framework for pandemic prediction using big data analytics. *Big Data Research*, 25, 100190.
- [2] Aldahiri, A., Alrashed, B., & Hussain, W. (2021). Trends in using IoT with machine learning in health prediction system. *Forecasting*, 3(1), 181-206.
- [3] Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A. I., Almohareb, S. N., . . . Badreldin, H. A. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. *BMC medical education*, 23(1), 689.
- [4] Ameen, S., Wong, M.-C., Yee, K.-C., & Turner, P. (2022). AI and clinical decision making: the limitations and risks of computational reductionism in bowel cancer screening. *Applied Sciences*, 12(7), 3341.
- [5] Aminizadeh, S., Heidari, A., Dehghan, M., Toumaj, S., Rezaei, M., Navimipour, N. J., . . . Unal, M. (2024). Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. *Artificial Intelligence in Medicine*, 149, 102779.

- [6] Badawy, M., Ramadan, N., & Hefny, H. A. (2023). Healthcare predictive analytics using machine learning and deep learning techniques: a survey. *Journal of Electrical Systems and Information Technology*, 10(1), 40.
- [7] Bardhan, I., Chen, H., & Karahanna, E. (2020). Connecting systems, data, and people: A multidisciplinary research roadmap for chronic disease management. *MIS Quarterly*, 44(1).
- [8] Bikman, B. (2020). *Why We Get Sick: The Hidden Epidemic at the Root of Most Chronic Disease--and how to Fight it*: BenBella Books.
- [9] Burd, A., Levine, R. L., Ruppert, A. S., Mims, A. S., Borate, U., Stein, E. M., . . . Deininger, M. (2020). Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. *Nature medicine*, 26(12), 1852-1858.
- [10] Cadet, E., Osundare, O. S., Ekpobimi, H. O., Samira, Z., & Wondaferew, Y. (2024). AI-powered threat detection in surveillance systems: A real-time data processing framework.
- [11] Craig, K. J. T., Fusco, N., Gunnarsdottir, T., Chamberland, L., Snowdon, J. L., & Kassler, W. J. (2021). Leveraging data and digital health technologies to assess and impact social determinants of health (SDoH): a state-of-the-art literature review. *Online Journal of Public Health Informatics*, 13(3).
- [12] Dritsas, E., & Trigka, M. (2023). Efficient data-driven machine learning models for cardiovascular diseases risk prediction. *Sensors*, 23(3), 1161.
- [13] Ehrman, J. K., Gordon, P. M., Visich, P. S., & Keteyian, S. J. (2023). *Clinical exercise physiology: exercise management for chronic diseases and special populations*: Human Kinetics.
- [14] Enahoro, Q. E., Ogugua, J. O., Anyanwu, E. C., Akomolafe, O., Odilibe, I. P., & Daraojimba, A. I. (2024). The impact of electronic health records on healthcare delivery and patient outcomes: A review. *World Journal of Advanced Research and Reviews*, 21(2), 451-460.
- [15] Foo, K. M., Sundram, M., & Legido-Quigley, H. (2020). Facilitators and barriers of managing patients with multiple chronic conditions in the community: a qualitative study. *BMC public health*, 20, 1-15.
- [16] Fox, I., Lee, J., Pop-Busui, R., & Wiens, J. (2020). *Deep reinforcement learning for closed-loop blood glucose control*. Paper presented at the Machine Learning for Healthcare Conference.
- [17] Golas, S. B., Nikolova-Simons, M., Palacholla, R., op den Buijs, J., Garberg, G., Orenstein, A., & Kvedar, J. (2021). Predictive analytics and tailored interventions improve clinical outcomes in older adults: a randomized controlled trial. *NPJ digital medicine*, 4(1), 97.
- [18] Higgins, V., Sohaei, D., Diamandis, E. P., & Prassas, I. (2021). COVID-19: from an acute to chronic disease? Potential long-term health consequences. *Critical reviews in clinical laboratory sciences*, 58(5), 297-310.
- [19] Hood, L., & Price, N. (2023). *The Age of Scientific Wellness: Why the Future of Medicine Is Personalized, Predictive, Data-Rich, and in Your Hands*: Harvard University Press.
- [20] Hossain, M. E., Uddin, S., & Khan, A. (2021). Network analytics and machine learning for predictive risk modelling of cardiovascular disease in patients with type 2 diabetes. *Expert Systems with Applications*, 164, 113918.

[21] Igwama, G. T., Olaboye, J. A., Cosmos, C., Maha, M. D. A., & Abdul, S. (2024). AI-Powered Predictive Analytics in Chronic Disease Management: Regulatory and Ethical Considerations.

[22] Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., . . . Snowdon, J. L. (2021). Precision medicine, AI, and the future of personalized health care. *Clinical and translational science*, 14(1), 86-93.

[23] Librenza-Garcia, D., Passos, I. C., Feiten, J. G., Lotufo, P. A., Goulart, A. C., de Souza Santos, I., . . . Brunoni, A. R. (2021). Prediction of depression cases, incidence, and chronicity in a large occupational cohort using machine learning techniques: an analysis of the ELSA-Brasil study. *Psychological Medicine*, 51(16), 2895-2903.

[24] Lorig, K., Laurent, D., Gonzalez, V., Sobel, D., & Minor, M. (2020). *Living a healthy life with chronic conditions: Self-management skills for heart disease, arthritis, diabetes, depression, asthma, bronchitis, emphysema and other physical and mental health conditions*: Bull Publishing.

[25] Mertler, C. A., Vannatta, R. A., & LaVenia, K. N. (2021). *Advanced and multivariate statistical methods: Practical application and interpretation*: Routledge.

[26] Nwadiugwu, M. C. (2021). Multi-morbidity in the older person: an examination of polypharmacy and socioeconomic status. *Frontiers in public health*, 8, 582234.

[27] Okoduwa, I. O., Ashiwaju, B. I., Ouguga, J. O., Awoogun, J. O., Awonuga, K. F., & Anyanwu, E. C. (2024). Reviewing the progress of cancer research in the USA. *World Journal of Biology Pharmacy and Health Sciences*, 17(2), 068-079.

[28] Olorunyomi, T. D., Sanyaolu, T. O., Adeleke, A. G., & Okeke, I. C. (2024). Integrating FinOps in healthcare for optimized financial efficiency and enhanced care.

[29] Organization, W. H. (2021). *Decade of healthy ageing: baseline report*: World Health Organization.

[30] Oyeniran, C., Adewusi, A. O., Adeleke, A. G., Akwawa, L. A., & Azubuko, C. F. (2022). Ethical AI: Addressing bias in machine learning models and software applications. *Computer Science & IT Research Journal*, 3(3), 115-126.

[31] Pelluru, K. (2020). Prospects and Challenges of Big Data Analytics in Medical Science. *Journal of Innovative Technologies*, 3(1), 1– 18-11– 18.

[32] Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of best practices for evidence for prediction: a review. *JAMA psychiatry*, 77(5), 534-540.

[33] Razzak, M. I., Imran, M., & Xu, G. (2020). Big data analytics for preventive medicine. *Neural Computing and Applications*, 32(9), 4417-4451.

[34] Rudnicka, E., Napierała, P., Podfigurna, A., Męczkalski, B., Smolarczyk, R., & Grymowicz, M. (2020). The World Health Organization (WHO) approach to healthy ageing. *Maturitas*, 139, 6-11.

[35] Sanyaolu, T. O., Adeleke, A. G., Efunniyi, C., Azubuko, C., & Osundare, O. (2024). Harnessing blockchain technology in banking to enhance financial inclusion, security, and transaction efficiency. *International Journal of Scholarly Research in Science and Technology*, August, 5(01), 035-053.

- [36] Serradilla, O., Zugasti, E., Rodriguez, J., & Zurutuza, U. (2022). Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects. *Applied Intelligence*, 52(10), 10934-10964.
- [37] Silva-Spínola, A., Baldeiras, I., Arrais, J. P., & Santana, I. (2022). The road to personalized medicine in Alzheimer's disease: the use of artificial intelligence. *Biomedicines*, 10(2), 315.
- [38] Skou, S. T., Mair, F. S., Fortin, M., Guthrie, B., Nunes, B. P., Miranda, J. J., . . . Smith, S. M. (2022). Multimorbidity. *Nature Reviews Disease Primers*, 8(1), 48.
- [39] Udegbe, F. C., Ebule, O. R., Ebule, C. C., & Ekesobi, C. S. (2024). The role of artificial intelligence in healthcare: A systematic review of applications and challenges. *International Medical Science Research Journal*, 4(4), 500-508.
- [40] Wang, S., & Zhu, X. (2021). Predictive modeling of hospital readmission: challenges and solutions. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 19(5), 2975-2995.
- [41] Weir, R. C., Proser, M., Jester, M., Li, V., Hood-Ronick, C. M., & Gurewich, D. (2020). Collecting social determinants of health data in the clinical setting: findings from national PRAPARE implementation. *Journal of Health Care for the Poor and Underserved*, 31(2), 1018-1035.
- [42] Zhu, T., Kuang, L., Daniels, J., Herrero, P., Li, K., & Georgiou, P. (2022). IoMT-enabled real-time blood glucose prediction with deep learning and edge computing. *IEEE Internet of Things Journal*, 10(5), 3706-3719.