ABSTRACT
This paper has studied the thermoluminescence (TL) characteristics of Himalayan salt and TLD 200, considering their use as an environmental dosimeters. We examined the thermoluminescence (TL) characteristics of these two materials, using gamma doses up to 83 mRad from the 137Cs-source. In this work, we utilize Harshaw Chemical Company’s dysprosium CaF2:Dy (TLD-200) to activate calcium fluoride, but we use Himalayan salt in the form of 4 mm diameter and 1 mm thickness discs. We record the thermoluminescence (TL) of the gamma-irradiated material using a conventional TL apparatus. At first, we observed two to three peaks within the temperature range. All peaks have been well-resolved, reaching their maximum intensity at 204, 282 oC, and reaching 139, 204, and 269 oC for Himalayan salts and TLD-200 respectively. The materials under investigation, i.e., Himalayan salt and TLD-200, possess many good dosimetric properties, and therefore these can be considered environmental dosimetry.
References
[1] T.M.Salman, A.Y. AL-Ahmad, H.A. Badran , C.A Emshary, Diffused transmission of laser beam and
image processing tools for alpha-particle track-etch dosimetry in PM-355 SSNTDs, Phys. Scr. 90,
(2015) 085302 (8pp). http://dx.doi.org/10.1088/0031-8949/90/8/085302
[2] A. Al-Salihi, R.D. Salim, R. K. Fakher Alfahed, H.A.Badran, Effect of Solar radiation induced and
alpha particles on Nonlinear behavior of PM-355 film, IOP Conf. Series: Materials Science and
Engineering 928 (2020) 072056. https://doi.org/10.1088/1757-899X/928/7/072056
[3] R.K. Fakher Alfahed, A. Imran, M.S. Majeed, H.A. Badran, Photoluminescence characterizations
and nonlinear optical of PM-355 nuclear track detector film by alpha particles and laser irradiation,
Phys. Scr. 95 (2020) 075709 (8pp). https://doi.org/10.1088/1402-4896/ab7e33
[4] M.T.Obeed, R. Ch. Abul-Hail, H. A. Badran, Gamma Irradiation Effect on The Nonlinear Refractive
Index and Optical Limiting Behavior of Pyronine Y Dye Solution, Journal of Basrah Researches
(Sciences), 46 (1) (2020) 49-56.
[5] S.W.S. McKeever. Thermoluminescence of Solids, 1st edition. New Jersey, Cambridge University
Press. (1985).
[6] A. Pradhan, A. Bakshi. Calibration of TLD badges for photons of energy above 6 MeV and
dosimetric intricacies in high energy gamma ray fields encountered in nuclear power plants, Radiat
Prot Dosim, 98 (2002) 283-290.
[7] J.C. Rosenwald, A. Nahum, J. Chavaudra, G.A. Carlsson, D. Dance, A. Bielajew, et al. Handbook
of radiotherapy physics theory and practice. (2008).
[8] R. Siddique, Z. Uddin, M. Hussain. Dosimetric evaluation and verification of external beam 3-D
treatment plans in humanoid phantom using thermoluminescent dosimeters (TLDs), J Basic Appl
Sci, 8 (2012) 690-695.
[9] M.G. Nunes, L.L. Campos. Study of CaSO4:Dy and LiF:Mg,Ti detectors TL response to electron
radiation using SW Solid Water phatom. Radiation Mesurments 43 (2008) 459-462.
[10] E.J. Antonio, T.M. Poston, B.A. Rathbone, Thermoluminescent Dosimeter Use for Environmental
Surveillance at the Hanford Site, (2010) 1971–2005.
[11] T. Kron, Applications of Thermoluminescence Dosimetry in Medicine. Radiation Protection
Dosimetry, 85 (1999) 333–340.
[12] L.V.E..Caldas, M.I.Teixeira. Commercial glass for high doses using different dosimetric
techniques. Radiation Protection Dosimetry, 101(1) (2002)149-152.
[13] M.S. Akselrod, V.S. Kortov, Thermoluminescent and Exoemission Properties of New High
Sensitivity TLD α-Al2O3:C Crystals, Radiat. Prot. Dosim. 66 (1990) 105-110.
[14] A. Imran, S.J. Bader, A. Al-Salihi, H. A.Badran, Gamma irradiation impact on the morphology
and thermal blooming of sodalime glass. AIP Conference Proceedings 2290 (2020) 050038.
https://doi.org/10.1063/5.0031473
[15] R.K.F.Alfaheda, A.S.Al-Asadib, M.F.Al-Mudhafferb, H.A.Badran. Synthesis, morphological and
optical characterizations of the poly (Otoluidine)- LiCl networks thin film. Opt Laser. Technol.
133 (2021) 106524 . https://doi.org/10.1016/j. optlastec.2020.106524.
[16] B.Kadem, R.K.F. Alfahed, A.S.Al-Asadi, H.A. Badran,. Morphological, structural, optical, and
photovoltaic cell of copolymer P3HT: ICBA and P3HT:PCBM. Optik – International Journal for
Light and Electron Optics 204 (2020) 164153. https://doi. org/10.1016/j.ijleo.2019.164153.
[17] H. A. Bdran, R. C. H. Abul-hail, M. T. Obeed. Study on effect of Gamma radiation on some linear
and nonlinear properties of Pyronine Y, AIP Conference Proceedings 2290 (2020) 050035.
https://doi.org/10.1063/5.0027452
[18] H.A.Badran. Thermal lens and all optical switching of new organometallic compound dopedpoly-
acrylamide gel. Results Phys. 4, (2014) 69–72. https://doi.org/ 10.1016/j.rinp.2014.05.004.
[19] R. K. F. Alfahed1, K. K. Mohammad, M. S. Majeed, H. A. Badran, K. M. Ali, B.Y. Kadem,
preparation, morphological, and mechanical characterization of titanium dioxide (TiO2)/polyvinyl
alcohol (PVA) composite for gamma-rays radiation shielding, IOP Conf. Series: Journal of
Physics: Conf. Series 1279 (2019) 012019. https://doi.org/10.1088/1742-6596/1279/1/012019
[20] A.K. Biswal, F. Dilnawaz, K.A.V.David, N.K. Ramaswamy, A,N, Misra. Increase in the intensity
of ther moluminescence Q-band during leaf ageing is due to a block in the electron transfer from
QA to QB. Luminescence; 16 (2001) 309–313.
[21] H.A. Al-Hazam, R.K.F. Al-fahad, A.M. Imran, H. A.Badran, H.S. Shaker, A. Alsalihi, K.I. Ajeel.
Preparation and optoelectronic studies of the organic compound [2-(2,3 dimethyl phenylamino)-
N–Phenyl benzamide doped (PMMA)]. J. Mater. Sci.: Mater. Electron. 30 (2019) 10284.
https://doi.org/ 10.1007/s10854-019-01365-2
[22] H. A.Badran, K. I. Ajeel, H.G. Lazim. Effect of nano particle sizes on the third-order optical non linearities and nanostructure of copolymer P3HT: PCBM thin film for organic photovoltaics.
Mater Res Bull 76 (2016) 422–430. http://dx.doi.org/10.1016/j.materresbull.2016.01.005
[23] A.T. Fadhil, H.A. Badran, H.A. Hasan, R. Ch. Abul-Hail. Azimuthal angle scan distribution,
third order response, and optical limiting threshold of the Bismarck Brown Y:PMMA film.
Current Optics and Photonics 7 (2023)721-731. https://doi.org/10.3807/COPP.2023.7.6.721
[24] H.A. Badran, A.H. Hanan, R.K.F. Alfahed, K.I.Ajeel. Second order hyperpolarizability and
nonlinear optical properties of novel organic compound-doped poly (O- methoxyaniline)
polymer film. J Mater Sci: Mater Electron 32 (2021)14623–14641.
https://doi.org/ 10.1007/s10854-021-06021-2
[25] E. Uzun, Y. Yarar , Alumina as a Thermoluminescent Material, AIP Conference Proceedings 899
(2007) 805.
[26] Podgorsak EB. Review of Radiation Oncology Physics: A Handbook for Teachers and Students.
Vienna, Austria: IAE Agency 2003.
[27] M.A. Rajaa, H.A. Badran, R.Ch. Abul-hall. Electrical, Thermal Lens and Optical Study of
Fluorescein Film for Application as Organic Photovoltaic Devices, Journal of Fluorescence,34
[28] H. A.Badran, A.A. Al-Fregi,R.K.F. Alfahed, A.S. Al-asadi. Study of thermal lens technique and
Third order nonlinear susceptibility of PMMA base containing 5′,5′′dibromo-o cresolsulfoth-
alein. J. Mater. Sci.: Mater. Electron. 28 (2017) 17288.
https://doi.org/10.1007/s10854-017-7661-4
[29] F. A. Tuma, A. A. Jari, H. A. Hasan, H. A. Badran. Synthesis, Surface Morphology, Gas Sensor,
DSC Technique and Third‑Order Behavior of Conducting Polymer, Journal of Fluorescence,
(2023). https://doi.org/10.1007/s10895-023-03448-0
[30] V. E. Kafadar, A. N. Yazici, R. G. Yildirim, The effects of heating rate on the dose response characteristics of TLD-200, TLD-300 and TLD-400, Nucl. Inst. Meth. B 267 (2009) 3337–3346.
[31] W. Binder, J.R. Cameron. Dosimetric properties of CaF2:Dy, Health Phys. 17(1969) 613–618.
Download all article in PDF