ABSTRACT
Doped vanadate ceramics with general formula Ca3-xInxVO8 were synthesized by using two
different precursors ( oxalate & citrates) to get maximum homogeneity inside the bulk of the material
where x = 0.05 and 0.25 mole. Structural and microstructural properties were monitoring by using
both of XRD and SEM evaluating that indium doped – calcium vanadate ceramic has the
semiconducting classical doubly perovskite phase as proved in the X-ray diffractogram, grain size of
the material bulk was found to be in between 1.57- 2.23 μm which are lower than those reported in
literatures. Magnetic measurements indicated that the In- doped – calcium vanadate ceramic exhibits
an semiconducting behavior confirming that indium – hole dopings enhance the paramagnetic
character and semi-conduction mechanism of the hexagonal perovskite phase. Furthermore 3D-AFM
investigations were made to study effect of indium doping on the surface topology and grain size in
the material bulk.
References
[1] D. Szwagierczak and J. Kulawik, J. Eur. Ceram. Soc. 24 (2004) 1979.
[2] H. El Alaoui–Belghiti, R. Von der Mühll, A. Simon, M. Elaatmani and J. Ravez, Mater.
Lett. 55 (2002) 138.
[3] N. Wakiya, J.K. Wang, A. Saiki, K. Shinaki and N. Mizutani, J. Eur. Ceram. Soc. 19
(1999) 1071.
[4] M.R. Raju and R.N.P. Choudhary, J. Phys. Chem. Solids 64 (2003) 847.
[5] X.M. Chen, Z.Y. Xu and J. Li, J. Mater. Res. 15 (2000) 125.
[6] L.G. Van Uitert, S. Singh and H.J. Levinstein, Appl. Phys. Lett. 11 (1967) 61.
[7] J.J. Rubin, L.F. Van Uitert and H.J. Levinstein, J. Cryst. Growth 1 (1967) 315.
[8] W. Wersing, Electronic Ceramics. In: B.C.H. Steele, Editor, Elsevier, New York
(1991) Chapter 4.
[9] W. Wersing, Curr. Opin. Solid State Mater. Sci. 1 (1996) 715.
[10] T. Negas, G. Yeager, S. Bell and R. Amren, NIST special publication 804. In: P.K.
Davies and R.S. Roth, Editors, NIST (1991), pp. 21-38.
[11] R.J. Cava, J.J. Krajewski and R.S. Roth, Mater. Res. Bull. 33 (1998) 527
[12] R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato and A. Kan, J. Alloy. Compd. 424 (2006)
388.
[13] H. Ogawa, A. Yokoi, R. Umemura and A. Kan, J. Eur. Ceram. Soc. 27 (2007) 3099.
[14] L.M.D. Cranswick, W.G. Mumme, I.E. Grey, R.S. Roth and P. Bordet, J. Solid State
Chem. 172 (2003) 178.
[15] H.-Zh. Li, L.-M. Liu, K.P. Reis and A.J. Jacobson, J. Alloy. Compd. 203 (1994), p. 181
[16] G. Xiao, F.H. Streitz, A. Gavrin, Y.W. Du , C.L. Chien, Phys. Rev. B 35, 8782 (1987).
[17] Y. Maeno, T. Tomita, M. Kyogoku, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, T.
Fujita, Nature 328, 512 (1987).
[18] J.M. Tarascon, P. Barboux, P.F. Maceli, L.H. Greene, G.W. Hull, Phys. Rev. B37, 7458
(1988).
[19] H. Renevier, J.L. Hodeau, M. Marezio, A. Santoro, Pysica C 220, 143 (1994).
[20] R.G. Kulkarni, D.G. Kuberkar, G. J. Baldaha, G.K. Bichile, Physica C 217, 175( 1993).
[21] J.F. Bringley, T.M. Chen, B.A. Averill, K.M. Wong, S.J. Poon, Phys. Rev. B38, 2432
(1988).
[22] Y. Shimakawa, Y. Kubo, K. Utsumi, Y. Takeda, M. Takano, Jpn. J. Appl. Phys. 27,
L1071 (2006).
[23] Z.Hiroi, M. Takano, Y. Takeda, R. Kanno, Y. Bando, Jpn. J. Appl. Phys. 27, L580
(1988).
[24] M.P. Delamare, M. Hervieu,I. Monot, K. Verbist and G. Tendeloo, Physica C 262, 220
(1996).
[25] P.N. Peters, R.C. Sisk. E. Ubran, C.Y. Huang and M.K. Wu Appl. Phys. Lett. 52, 2066
(1988).
[26] C.Y. Huang, Y. Shapiro, E.J. McNiff, P. N. Peters, B.B. Shwatrz, M.K. Wu, R.D. Shull
and C.K. Chiang, Mod. Phys. Lett. 2, 869 (1988).
[27] J.P. Singh, H.L. Leu, R.B. Poepple, E. Voorhees, G.T. Goudery, K. Winsley and D. Shi
J. Appl. Phys. 66, 3154 (1989).
[28] B. Dwir, M. Affronte and D. Pavuna, Appl. Phys. Lett. 55, 399 (1989).
[29] J. Jung, M.A. Mohammed, S.C. Cheng and J.P. Frank, Phys. Rev. B42, 6181 (1990).
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.