ABSTRACT
Soft chemistry procedures through sol–gel technique has applied to synthesize nano- Ti-doped
CdTe composite. Gels were synthesized by the hydrolysis of a complex solution of Si(OC2H5)4,
Cd(CH3COO)2·2H2O, Ti(CH3COO)4 and Te were heated from 350 to 600 °C in a H2─N2 atmosphere
to form fine cubic CdTe doped crystals. The size of CdTe crystals, determined from the line
broadening of X-ray diffraction pattern, increases from 6 to 21 nm in diameter with increasing heattreatment temperature. Micro-structural features of Ti-doped CdTe crystals were characterized by both
of AFM and SEM investigations . The analysis of micro-structural micrographs of both of SEM and
AFM indicated that titanium additions improved the crystal growth of grain towards more lower grain
size which ranged in between 1.4-2.5 μm while 0.67 μm through Scherrer‟s calculations.
References
[1] The Mora-Sero, R. Tena-Zacra, J. Gozalez, V. Munoz Sanjose, J. Crys Growth 262, 19 (2004).
[2] C. S. Feretides, D. Marinskiy, V. Viswanathan, B. Tetall, V. Palekis, P. Selvaraj, D.L
Morel, Thin solid films, 361-362, 520 (2000).
[3] G.M. Li,. R.A. Zingaro, M. Segi, J.H. Reibenspies, T. Nakajima, Organometallics 756 (1997).
[4] G.M Li, R.A. Zingaro, J. Chem. soc. perkin Trans. 1, 647 (1998)
[5] B.E. McCandless, J.R. Sites, in; Luque, A. Hegedus. S.(Eds), Handbook of Photovoltaic
Science and Engineering, John Wiley & Sons, (617-662) 2003.
[6] M. S. Han, T. W. Kang, J.H. Leem, M.H. Lee, K.J. Kim, T.W. Kim, J. Appl. Phys. 82, 6012 (1997).
[7] S. Rujirawat, Y. Xin, N. D. Browning, S. Sivananthan, D. J. Smith, S. -C. Y. Tsen, Y. P.
Chen, V. Nathan, Appl. Phys. Lett. 74, 2346 (1999).
[8] H. Ebe, T. Okamoto, H. Nishino, T. Saito, Y. Nishijima, M .Uchikoshi, M. Nagashima,
H. Wada, J. Electron. Mater. 25, 1358 (1996).
[9] R. Chou, M. Lin, K. Chou, Appl. Phys. Letts. 48, 523 (1986).
[10] I. Baht, W.S. Wang, Appl. Phys. Letts. 64, 566 (1994).
[11] J. H. Pei, C.M. Lin, D. S. Chou, Chin. J. Phys. 36, 44 (1998).
[12] H. Nishino, Y. Nishijima, J. Cryst. Growth 167, 488 (1996).
[13] R. Korenstein, P. Madison, P. Hallock, J. Vac. Sci. Technol. B 10, 1370 (1992).
[14] H. Tatsuoka, H. Kuwabara, Y. Nakanishi, H. Fujiyasu, J. Cryst. Growth 129, 686 (1993).
[15] M. Stoelo- Lerma, Ralph. A. Zingaro, S.J. Castillo, Journal of Oregano Metallic
Chemistry 623, 81-86 (2001).
[16] A.V. Kokate, M.R. Asabe, P.P. Hankare, B.K. Chougule, Journal of Physics and
Chemistry of Solids 68, 53-58 (2007).
[17] [A.V. Kokate, U.B. Suryavanshi, C.H. Bhosale, J. Sol. Energy 80, 156 (2006).
[18] T.L. Chu, S.S. Chu, J. Britt, C. Ferekides, C. Wang, C.Q. Wu, H.S. Ullal, Electron.
Device Lett. 13 (1992) 303.
[19] J. Britt, C. Ferekides, Appl. Phys. Lett. 62 (1993) 2851.
[20] T. Gruszecki, B. Holmstrom, Solar Energy Materials and Solar Cells, vol. 31, North
Holland, 1993 (pp. 227 ±234).
[21] N. Nakayama, et al., Sol. Energy Mater. Sol. Cells 35 (1994)271-278.
[22] M.S. Shaalan, J. Muller, Sol. Cells 28 (1990) 185-193.
[23] J. Tauc, in: J. Tauc (Ed.), Amorphousand Liquid Semiconductors, Plenum Press, New York, 1974 (p. 159).
[24] T.P. Sharma, et al., C.S.I.O. Commun. 19(3-4) (1992) 63-66.
[25] O.S. Heavens, Optical Properties of Thin solid Films, Dover, New York, 1965.
[26] S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1979.
[27] S.K. Sharma, PhD Thesis, C.C.S. University, Meerut, India, 1998.
[28] C. Crevecoueur, Phys. Lett. A 33 (1) (1970) 25.
[29] D.B. Sharma, P. Kasyap, O.P. Agnihotri, Physics of Semiconductor Devices, in: V.
Kumar, S.K. Agarwal (Eds.), Narosa-Publishing House, New Delhi, India, 1998.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.