ABSTRACT
From last ten years extensive research on supramolecular chemistry has been carried upon, specifically on calixarenes, resorcinarenes and its cavitands due to its wide industrial applications. Researchers has developed, different types of novel supramolecular moiety using various traditional synthesis process by modifying certain reaction condition that may help to develop new character contain supramolecule. In this review we summarized different types of reactions like acid-amide reaction, esterification, Schiff base, chalcone, formylation etc. Development of new potential compounds by derivation of calix[4]arene and resorsine[4] arene on their upper rim or lower rim which shown liquid crystal materials, biological activity, drug delivery host-guest system, optical chemo sensor, catalysis and many other applications. Therefore, researchers line of attack on the green synthesis way, microwave irradiation and modified classical methods for synthesis. All the synthesized macromolecules prepared by different reactions and are very useful to develop a new supramolecular generation and it has create many application in the future.
REFERENCES
1. Lehn, J. M.; Supramolecular chemistry-scope and perspectives molecules, supermolecules and molecular devices. Angew. Chem. Int. Ed. 1988, 27, 89. https://doi.org/10.1002/anie.198800891
2. Supramol Chem, 2nd ed., J. W. Steed; J. L. Atwood; P. A. Gale; John Wiley and Sons: New York, 2012.
3. Lehn, J.; From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev. 2007, 106, 151. https://doi.org/10.1039/B616752G
4. Boinski, T.; Cieszkowski A; Szumna A. Hybrid [n]Arenes through Thermodynamically Driven Macrocyclization Reactions. J. Org. Chem. 2015, 3488. https://doi.org/10.1021/acs.joc.5b00099
5. Taylor & francis group. Synergy in supramolecular chemistry, 1st ed.; N. Tatsuya; Boca Raton: CRC Press, 2014.
6. Core Concepts in Supramolecular Chemistry and Nanochemistry, 1st ed.; J. W. Steed; D. R. Turner; K. J. Wallace; John Wiely & sons Ltd: John Wiley & Sons: West Sussex, England, 2007.
7. Monograph in Supramolecular Chemistry, C. D. Gutsche; J. F. Stoddart; The Royal Society of Chemistry: Cambridge, 1989.
8. Jozsef, S.; Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743. https://doi.org/10.1021/cr970022c
9. Calixarenes for Separations, C. D. Gutsche; J. F. Stoddart; ACS Symposium Series: Washington, DC, 1989.
10. Hooley, R. J.; Rebek, J. Chemistry and Catalysis in Functional Cavitands. ACS Chem. Biol. 2009, 16, 255. https://doi.org/10.1016/j.chembiol.2008.09.015
11. Far, A. R.; Shivanyuk, A.; Rebek, J. Water-Stabilized Cavitands. J. Am. Chem. Soc. 2002, 124, 4.
12. Melegari, M.; Suman, M.; Pirondini, L.; Moiani, D. Supramolecular Sensing with Phosphonate Cavitands. Chem. Eur. J. 2008, 14, 5772. https://doi.org/10.1002/chem.200800327
13. Gibb, B., Kim, S. K., Ogoshi, T., Gibb, B. C. , Murray, J., Kim, K. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem Soc Rev. 2017, 9, 2479. https://doi.org/10.1039/C7CS00095B
14. Rudkevich, D. M.; Rebek, J.; Scripps, T.; Torrey, N.; Road, P.; Jolla, L. Self-Folding Cavitands, J. Am. Chem. Soc. 1998, 120, 12216. https://doi.org/10.1021/ja982970g
15. Rudkevich, D. M., Rebek, J., Deepening Cavitands. EurJOC. 1999, 120, 1991. https://doi.org/10.1002/(SICI)1099-0690(199909)1999:9%3C1991::AID-EJOC1991%3E3.0.CO;2-5
16. Blackwell, J. M., Foster, K. L., Beck, V. H., Piers, W. E. B(C6F5)3-Catalyzed Silation of Alcohols: A Mild, General Method for Synthesis of Silyl Ethers. J. Org. Chem. 1999, 64, 2577. https://doi.org/10.1021/jo9903003
17. Brook, A. G.; Nyburg, S. C.; Reynolds, W. F.; Poon, Y. C.; Chang, Y.; Lee, J. Silicon-29 NMR studies of relatively stable silaethylenes. J. Am. Chem. Soc. 1979, 101, 6752. https://doi.org/10.1021/ja00516a047
18. Synthesis of bowlic liquid crystals containing acyclotriveratrylene core, Vo, L. P.; San Jose State University, USA, 1997, 1611. https://doi.org/10.31979/etd.v8nw-gfun
19. Mcmurry, J. E., Christopher, J. Synthesis and conformation of unsubstituted calix[4]arene. Tetrahedron Lett. 1991, 32, 5655. https://doi.org/10.1016/S0040-4039(00)93521-4
20. Cram, D. J., Cram, J. M. Cyclophane chemistry: bent and battered benzene rings. Acc. Chem. Res. 1970, 4, 204. https://doi.org/10.1021/ar50042a003
21. Mezo, A.R., Sherman, J. C. Water-Soluble Cavitands: Synthesis of Methylene-Bridged Resorcin[4]arenes Containing Hydroxyls and Phosphates at Their Feet and Bromomethyls and Thiomethyls at Their Rims, Journal of Organic Chemistry. 1998, 63, (20), 6824. https://doi.org/10.1021/jo980305k
22. Naumann, C., Roma, E., Peinador, C., Ren, T., Patrick, B. O., Kaifer, A. E., Sherman, J. C. Expanding Cavitand Chemistry: The Preparation and Characterization of [n]Cavitands with n≥4, Chem. Eur. J. 2001, 7, 1637. https://doi.org/10.1002/1521-3765(20010417)
23. Irwin, J. L., Sherburn, M.S. Practical Synthesis of Selectively Functionalized Cavitands. J. Org. Chem. 2000, 65, 602. https://doi.org/10.1021/jo991185z
24. Niederl, J. B., Vogel, H. J., Aldehyde—Resorcinol Condensations. J. Am. Chem. Soc. 1940, 62, 2512. https://doi.org/10.1021/ja01866a067
25. Bourgeois, J., Stoeckli-evans, H. Synthesis of New Resorcinarenes Under Alkaline Conditions. Helv. Chim. Acta. 2007, 88, 2722. https://doi.org/10.1002/hlca.200590211
26. Archives of Environmental Protection, Iwanek, W. A., Wzorek, A; Bentham Science- International Publisher of Journals, 398, 2009.
27. Düker, M. H., Gómez, R., Vande, C. M. L., Azov, V. A. Upper rim tetrathiafulvalene-bridged calix[4]arenes. Tetrahedron Lett. 2011, 52, 2881. https://doi.org/10.1016/j.tetlet.2011.03.140
28. Hauke, F., Myles, A. J., Rebek, J. Lower rim mono-functionalization of resorcinarenes. ChemComm. 2005, 33, 4164. https://doi.org/10.1039/B506048F.
29. Miao, S., Adams, R. D., Guo, D., Zhang, Q. Structural conformers of symmetry substituted resorcin[4]arenes. J. Mol. Struct. 2003, 659, 119. https://doi.org/10.1016/j.molstruc.2003.08.004
30. Perry, J. J. B., Kilburn, J. D. For a review of synthetic developments in host-guest chemistry. Contemp. Org. Synth., 1997, 4, 61. https://doi.org/10.1039/CO9970400061
31. Hogberg, A. S. Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products. J. Org. Chem. 1980, 45, 4498. https://doi.org/10.1021/jo01310a046
32. Cay, S., Sayin, S., Engin, M. S., Eymur, S. Preparation and Characterization of Calix[4]aren-immobilized Magnetic Microcapsule and Its Application in Heavy Metal Removal, Polycyclic Aromatic Compounds., 2017, 40, 116. https://doi.org/10.1080/10406638.2017.1363063
33. Kundrat, O., Cisarova, I., Bo, S., Pojarova, M., Lhotak, P. Uncommon Regioselectivity in Thiacalix[4]arene Formylation. J. Org. Chem. 2009, 5, 4775. https://doi.org/10.1021/jo9005574
34. Chawla, H. M., Pant, N., Srivastava, B. Regioselective ipso formylation of p-tert-butylcalix[4]arene. Tetrahedron Lett. 2005, 46, 7259. https://doi.org/10.1016/j.tetlet.2005.08.041
35. Chawla, H. M., Santra, A. Convenient One Pot Procedure for Synthesis of Formylated Calix[n]arenes. Synth. Commun. 2006, 31, 17. https://doi.org/10.1081/SCC-100105385
36. Kumar, S., Chawla, H. M., Varadarajan, R. A single step preparation of p-sulphonated calixarenes. Indian J. Chem. 2003, 42, 2863.
37. Lukasek, J., Böhm, S., Dvořáková, H., Eigner, V., Lhoták, P. Regioselective Halogenation of Thiacalix[4]arenes in the Cone and 1,3-Alternate Conformations. Org. Lett. 2014, 16, 5100. https://doi.org/10.1021/ol5024536
38. Hudecek, O., Budka, J., Eigner, V., Lhot, P. Recognition of chiral anions using calix[4]arene-based ureido receptor in the 1,3-alternate conformation. Tetrahedron Lett. 2012, 68, 4187. https://doi.org/10.1016/j.tet.2013.11.030
39. Kundrat, O., Kroupa, J., Bohm, S., Eigner, V., Lhotak, P. Meta Nitration of Thiacalixarenes. J. Org. Chem. 2010, 75, 8372. https://doi.org/10.1021/jo1013492
40. Barrett, E. S., Irwin, J. L., Edwards, A. J., Sherburn, M. S. Superbowl Container Molecules. J. Am. Chem., 2006, 126, 16747. https://doi.org/10.1021/ja044405l
41. Karami, B., Khodabakhshi, S., Hashemi, F. Synthesis of a novel class of benzofurans via a three-component, regiospecific intramolecular heterocylization reaction. Tetrahedron Lett. 2013, 54, 3583. https://doi.org/10.1016/j.tetlet.2013.03.124
42. Kamaei, V., Karami, B. Silica-supported molybdic acid: preparation, characterization, and its catalytic application in synthesis of pyranocoumarins. Polycycl Aromat Compd. 2015, 34, 37.
43. Karami, B., Khodabakshi, S. Synthesis of a novel class of benzofurans via a three-component, regiospecific intramolecular heterocylization reaction. Polycycl Aromat Compd. 2013, 31, 7. https://doi.org/10.1016/j.tetlet.2013.03.124
44. Khodabakhshi, S., Karami, B. A rapid and eco-friendly synthesis of novel and known benzopyrazines using silica tungstic acid (STA) as a new and recyclable catalyst. Catal. Sci. Technol. 2012, 2, 1940. https://doi.org/10.1039/C2CY20227A
45. Karami, B., Ghashghaee, V., Khodabakhshi, S. Novel silica tungstic acid (STA): Preparation, characterization and its first catalytic application in synthesis of new benzimidazoles. Catal. Commun. 2012, 20, 71. https://doi.org/10.1016/j.catcom.2012.01.012
46. Aoyama, Y., Tanaka, Y., Toi, H., Ogoshi, H. 2. Molecular recognition of amino acids: two-point fixation of amino acids with bifunctional metalloporphyrin receptors. J. Am. Chem. Soc. 1988, 110, 634. https://doi.org/10.1021/ja00220a078
47. Timmerman, P., Verboom, W., Reinhoudt, D. N. Resorcinarenes. Tetrahedron Lett. 1996, 52, 2663. https://doi.org/10.1016/0040-4020(95)00984-1
48. Cram, D. J., Karbach, S., Kim, H., Knobler, C. B., Maverick, E. F., Ericson, J. L., Helgeson, R. C. Cavitands as open molecular vessels form solvates J. Am. Chem. Soc. 1988, 110, 2229. https://doi.org/10.1021/ja00215a037
49. Bonsignore, S., Cometti, G., Dalcanale, E., Du Vosel, A. New columnar liquid crystals Correlation between molecular structure and mesomorphic behaviour. Liq. Cryst. 1990, 8, 639. https://doi.org/10.1080/02678299008047377
50. Barrett, A. G. M., Braddock, D. C., Henschke, J. P., Walker, E. R. Ytterbium(III) triflate-catalysed preparation of calix[4]resorcinarenes: Lewis assisted Brønsted acidity. J. Chem. Soc. 1999, 1, 873. https://doi.org/10.1039/A809919G
51. Peterson, K. E., Smith, R. C., Mohan, R. S. Bismuth compounds in organic synthesis, Synthesis of resorcinarenes using bismuth triflate. Tetrahedron Lett. 2003, 44, 7723. https://doi.org/10.1016/j.tetlet.2003.08.093
52. Hedidi, M., Hamdi, S. M., Mazari, T., Boutemeur, B., Rabia, C. Microwave-assisted synthesis of calix [4] resorcinarenes. Tetrahedron Lett. 2006, 62, 5652. https://doi.org/10.1016/j.tet.2006.03.095
53. Kudo, H., Shigematsu, K., Mitani, K., Nishikubo, T. One-pot synthesis of a novel ladder polymer of calixarene via condensation reaction of resorcinol and alkanedial based on dynamic covalent chemistry. Macromolecules. 2008, 41, 2030. https://doi.org/10.1021/ma7019573
54. Mobinikhaledi, A., Kalhor, M., Ghorbani, A. R., Fatinejad, H. Chem. Asian J. 2010, 22, 1103.
55. Liu, K., Chen, S.L., Xiao, S.W., Zhang, X.L., Ba, D.C., Wang, D.Y., Du, G.Y. Ba, Y.S. Molecular simulation of protein transport controlled by pressure-driven flow in silica nanofluidic channels. Bulg. Chem. Commun. 2015, 47, 552.
56. Yashiro, A., Onodera, K., Li, C., Suzuki, Y., Katagiri, H. Supramol Chem. 2014, 26, 48. https://doi.org/10.1080/10610278.2013.822969
57. Konishi, H., Iwasaki, Y., Synth Commun. 1995, 6, 612.
58. Karami, B., Khodabakhshi, S., Safikhani, N., Arami, A. A green and highly efficient solvent-free synthesis of novel calicx [4] resorcinarene derivatives using tungstate sulfuric acid. Bull Korean Chem Soc. 2012, 33, 2. http://dx.doi.org/10.5012/bkcs.2012.33.1.123
59. Ngurah, B. I. G. M., Anwar, C. Synthesis of Benzoyl C-Phenylcalix [4] Resorcinaryl Octaacetate and Cinnamoyl C-Phenylcalix [4] arene for UV Absorbers. Indones. J. Chem. 2014, 14, 160. http://dx.doi.org/10.22146/ijc.21253
60. Darvish, F., Khazraee, S. Molecular iodine: An efficient and environment-friendly catalyst for the synthesis of calix[4]resorcinarenes. C. R. Acad. Sci. 2014, 17, 890. https://doi.org/10.1016/j.crci.2013.10.017
61. Knyazeva, I. R., Matveeva, V. I., Syakaev, V. V, Gabidullin, B. M., Gubaidullin, A. T., Gruner, M., Habicher, W. D., Burilov, A. R., Pudovik, M. A. Thiophosphorylated derivatives of meta-and ortho-hydroxybenzaldehydes in one-step syntheses of novel calix [4] resorcinols. Tetrahedron Lett. 2014, 55, 7209. https://doi.org/10.1016/j.tetlet.2014.11.019
62. McIldowie, M. J., Mocerino, M., Skelton, B. W., White, A. H. Facile Lewis Acid Catalyzed Synthesis of C4 Symmetric Resorcinarenes. Org. Lett. 2000, 2, 3869. https://doi.org/10.1021/ol006608u
63. Yasmin, L., Coyle, T., Stubbs, K. A., Raston, C. L. Stereospecific synthesis of resorcin [4] arenes and pyrogallol [4] arenes in dynamic thin films. ChemComm. 2013, 49, 10932. https://doi.org/10.1039/C3CC45176C.
64. Xu, M., Huo, F., Yin, C. A supramolecular sensor system to detect amino acids with different carboxyl groups. Sens. Actuators B Chem. 2017, 240, 1245. https://doi.org/10.1016/j.snb.2016.09.105
65. Oliveira, C. B. S., Meurer, Y. S. R., Oliveira, M. G., Medeiros, W. M. T. Q., Silva, Brito, A. C. F., Pontes, D. D. L., Andrade-neto, V. F. Comparative Study on the Antioxidant and Anti-Toxoplasma Activities of Vanillin and Its Resorcinarene Derivative. Molecules. 2014, 19, 5898. https://doi.org/10.3390/molecules19055898
66. Abosadiya, H. M., Hasbullah, S. A., Mackeen, M. M., Low, S. C., Ibrahim, N., Koketsu, M., Yamin, B. M. Synthesis, Characterization, X-ray Structure and Biological Activities of C-5-Bromo-2-hydroxyphenylcalix [4]-2-methyl resorcinarene. Molecules. 2013, 18, 13369. https://www.mdpi.com/1420-3049/18/11/13369#
67. Szumna, A., Wierzbicki, M., Iwanek, W., Stefa, K. Solvent-free synthesis and structure of 2-naphthol derivatives of resorcinarenes. Tetrahedron Lett. 2015, 71, 2222. http://www.sciencedirect.com/science/article/pii/S004040201500277X
68. Konishi, H., Sakakibara, H., Kobayashi, K., Morikawa, O. Synthesis of the parent resorcin [4] arene. J. Chem. Soc. 1999, 1, 2583. https://doi.org/10.1039/A905613K
69. Pashirova, T. N., Gibadullina, E. M., Burilov, A. R., Kashapov, R. R., Zhiltsova, E. P., Syakaev, V. V., Habicher, W. D., Latypov, S. K., Konovalov, A. I. Amphiphilic O-functionalized calix [4] resocinarenes with tunable structural behavior. RSC Adv. 2014, 4, 9912. https://doi.org/10.1039/C3RA46146G
70. Mulatier, J., Martinez, A., Dutasta, J. Investigating Host–Guest Complexes in the Catalytic Synthesis of Cyclic Carbonates from Styrene Oxide and CO2. ACS Catal. 2015, 150, 6748. https://doi.org/10.1021/acscatal.5b01545
71. Maslennikova, V. I., Burikhina, A. V., Vasyanina, L. K., Nifant, E. E. Amination of calix[4]resorcinarenes. First synthesis of calix[4]phenylenediamines. Russ. J. Gen. Chem. 2010, 80, 548. https://doi.org/10.1134/S1070363210030333
72. Pansuriya, P. B., Friedrich, H. B. 1, 1′-(Ethane-1, 2-diyl) bis [3-(4-chlorobenzoyl) thiourea]. Acta. Crystallogr. B. 2011, E67, 112. https://doi.org/10.1107/S2414314616009275
73. Fangzhu, Y. P., Suya, X., Cheng, H. Synthesis of the p-tert-butyl calix[4] arene symmetrical sulfide derivatives and its extraction properties towards U(VI) from aqueous solution. J. Radioanal. Nucl. Chem. 2017, 314, 2137. https://doi.org/10.1007/s10967-017-5608-0
74. Grajda, M., Cmoch, P., Szumna, A. Inherently Chiral Iminoresorcinarenes through Regioselective Unidirectional Tautomerization. J. Org. Chem. 2013, 78, 1. https://doi.org/10.1021/jo4019182
75. Jain, V. K., Kanaiya, E. P. H. Diazo reductive: a new approach to the synthesis of novel “upper rim” functionalized resorcin [4] arene Schiff-bases. J. Incl. Phenom. Macrocycl. Chem. 2008, 62, 111. https://doi.org/10.1007/s10847-008-9445-1
76. Parulekar, S. N., Muppalla, K., Fronczek, F. R., Bisht, K. S. Synthesis of resorcin [4] arene cavitands by ring-closing metathesis. ChemComm. 2007, 46, 4901. https://doi.org/10.1039/B712981E
77. Atwood, J. L., Szumna, A. Hydrogen bonds seal single-molecule capsules. J. Am. Chem. Soc. 2002, 124, 10646. https://doi.org/10.1021/ja027191l
78. Beyeh, N. K., Pan, F., Ras, R. H. N‐Alkyl Ammonium Resorcinarene Chloride Receptors for Guest Binding in Aqueous Environment. Asian J. Org. Chem. 2016, 5, 1027. https://doi.org/10.1002/ajoc.201600187
79. Husain, A. A., Maknenko, A. M., Bisht, K.S. Spatially directional resorcin [4] arene cavitand glycoconjugates for organic catalysis. Chem. Eur. J. 2016, 22, 18. https://doi.org/10.1002/chem.201600352
80. Upadhyay, J. B., Parekh, H. M. Synthesis of supramolecular receptors for amino acid recognition. Curr. Chem. Lett. 2019, 8, 225. http://dx.doi.org/10.5267/j.ccl.2019.6.002
81. Upadhyay, J. B., Parekh, H. M. Resorcin[4]arene Schiff base derivatives: Synthesis, characterization, and extraction studies. J. Chem. Res. 2020, 44, 660–666. https://doi.org/10.1177/1747519820915871
82. Upadhyay, J. B., Parekh, H. M. Extraction of toxic metal ions by resorcin [4] arene Schiff base derivatives. S. Afr. J. Chem. 2020, 73, 157–162. http://dx.doi.org/10.17159/0379-4350/2020/v73a22
Download all article in PDF