ABSTRACT
In the paper, the porous coatings obtained on niobium and two titanium alloys (Ti6Al4V, and
TNZ) after Plasma Electrolytic Oxidation (PEO), known also as Micro Arc Oxidation, were studied.
The samples were treated at the voltage of 450 V for 3 minutes in the electrolyte consisting of 300 g
and 600 g of copper nitrate Cu(NO3)2 in 1 litre of concentrated phosphoric acid H3PO4, consecutively.
SEM and EDS studies were performed on the samples. Based on the obtained results it may be
concluded that enriched in copper porous coatings on all studied materials were created in the
electrolyte within copper nitrate amounting for 600 g. The proposed by the Authors factor to evaluate
the obtained coatings, i.e. copper-to-phosphorus ratio, which for the studied materials amounted to
0.21, clearly indicates that the performed electrochemical PEO treatment for surface modification
especially of bioimplants may be advised.
References
[1] Hryniewicz T, Physico-chemical and technological fundamentals of electropolishing
steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali).
Monograph no. 26, ed. by Koszalin University of Technology Publishing: 1989, 161
pages.
[2] Hryniewicz T, On the surface treatment of metallic biomaterials (Wstęp do obróbki
powierzchniowej biomateriałów metalowych). Ed. by Koszalin University of
Technology Publishing: 2007, 155 pages.
[3] Rokosz K, Electrochemical polishing in the magnetic field (Polerowanie
elektrochemiczne w polu magnetycznym). Ed. by Koszalin University of Technology
Publishing: 2012, 211 pages.
[4] Hryniewicz T, Rokicki R, Rokosz K, Co-Cr alloy corrosion behaviour after
electropolishing and “magnetoelectropolishing” treatments. Surface and Coatings
Technology, 62(17-18) (2008) 3073-3076; DOI: 10.1016/j.matlet.2008.01.130
[5] Hryniewicz T, Rokosz K, Analysis of XPS results of AISI 316L SS electropolished and
magnetoelectropolished at varying conditions. Surface and Coatings Technology,
204(16-17) (2010) 2583-2592; DOI: 10.1016/j.surfcoat.2010.02.005
[6] Hryniewicz T, Rokosz K, Zschommler Sandim H R, SEM/EDX and XPS studies of
niobium after electropolishing. Applied Surface Science, 263 (2012) 357-361;
DOI:10.1016/j.apsusc.2012.09.060
[7] Hryniewicz T, Rokicki R, Rokosz K, Magnetoelectropolishing for metal surface
modification. Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332;
DOI: 10.1179/174591907X246537
[8] Hryniewicz T, Rokicki R, Rokosz K, Corrosion and surface characterization of
titanium biomaterial after magnetoelectropolishing. Surface and Coatings Technology,
203(9) (2008) 1508-1515; DOI:10.1016/j.surfcoat.2008.11.028
[9] Hryniewicz T, Rokosz K, Polarization characteristics of magnetoelectropolishing
stainless steels. Materials Chemistry and Physics, 122(1) (2010) 169-174.
[10] Rokosz K, Hryniewicz T, Raaen S, Characterization of passive film formed on AISI
316L stainless steel after magnetoelectropolishing in a broad range of polarization
parameters. Journal of Iron and Steel Research, 83(9) (2012) 910-918.
[11] Hryniewicz T, Rokosz K, Investigation of selected surface properties of AISI 316L SS
after magnetoelectropolishing. Materials Chemistry and Physics, 123(1) (2010) 47-55.
[12] Hryniewicz T, Rokosz K, Corrosion resistance of magnetoelectropolished AISI 316L
SS biomaterial. Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64.
[13] Hryniewicz T, Rokosz K, Valiček J, Rokicki R, Effect of magnetoelectropolishing on
nanohardness and Young’s modulus of titanium biomaterial. Materials Letters, 83
(2012) 69-72; DOI:10.1016/j.matlet.2012.06.010
[14] Hryniewicz T, Rokosz K, Rokicki R, Prima F, Nanoindentation and XPS Studies of
Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8
(2015) 205-215; DOI:10.3390/ma8010205
[15] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, Comparative XPS analysis of
passive layers composition formed on AISI 304L SS after standard and high-current
density electropolishing. Surface and Interface Analysis, 47(1) (2015) 87-92.
[16] Rokosz K, Lahtinen J, Hryniewicz T, Rzadkiewicz S, XPS depth profiling analysis of
passive surface layers formed on austenitic AISI 304L and AISI 316L SS after highcurrent-density electropolishing. Surface and Coatings Technology, 276 (2015) 516-
520; DOI:10.1016/j.surfcoat.2015.06.022
[17] Rokosz K, Hryniewicz T, Rzadkiewicz S, Raaen S, High-Current-Density
Electropolishing (HDEP) of AISI 316L (EN 1.4404) Stainless Steel. Tehnicki VjesnikTechnical Gazette, 22(2) (2015) 415-424.
[18] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J, Plasma electrolysis for
surface engineering. Surface and Coatings Technology, 122(2-3) (1999) 73-93.
[19] Yerokhin A L, Nie X, Leyland A, Matthews A, Characterisation of oxide films
produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy. Surface and Coatings
Technology, 130(2-3) (2000) 195-206.
[20] Wheeler J M, Collier C A, Paillard J M, Curran J A, Evaluation of micromechanical
behaviour of plasma electrolytic oxidation (PEO) coatings on Ti–6Al–4V. Surface and
Coatings Technology, 204(21-22) (2010) 339-3409.
[21] Krzakala A, Mlynski J, Dercz G, Michalska J, Maciej A, Nieuzyla L, Simka W,
Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension.
Archives of Metallurgy and Materials, 59(1) (2014) 199-204.
[22] Rokicki R, Hryniewicz T, Pulletikurthi C, Rokosz K, Munroe N, Towards a better
corrosion resistance and biocompatibility improvement of Nitinol medical devices.
Journal of Materials Engineering and Performance, 24 (2015) 163401640; DOI:
10.1007/s11665-015-1429-x
[23] Zhang Xiangyu, Huang Xiaobo, Ma Yong, Lin Naiming, Fan Ailan, Tang Bin,
Bactericidal behavior of Cu-containing stainless steel surfaces. Applied Surface Science,
258 (2012) 10058-10063.
[24] Xiaohong Y, Xiangyug Z, Haibo W, Linhai T, Yong M, Bin T, Microstructure and
antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation.
Applied Surface Science, 292 (2014) 944-947; DOI: 10.1016/j.apsusc.2013.12.083
[25] Hempel F, Finke B, Zietz C, Bader R, Weltmann K D, Polak M, Antimicrobial surface
modification of titanium substrates by means of plasma immersion ion implantation and
deposition of copper. Surface and Coatings Technology, 256 (2014) 52058;
DOI:10.1016/j.surfcoat.2014.01.027
[26] Zhua W, Zhang Z, Gu B, Sun J, Zhu L, Biological Activity and Antibacterial Property
of Nano-structured TiO2 Coating Incorporated with Cu Prepared by Micro-arc
Oxidation. Journal of Materials Science and Technology, 29(3) (2013) 237-244;
DOI:10.1016/j.jmst.2012.12
[27] Parajulee S, Hayakawa M, Ikezawa S, Adhesion Strength of TiN Stacked TiO2 Film
Correlated with Contact Angle, Critical Load, and XPS Spectra. Plasma and Fusion
Research: Letters, 4(055) (2009) 055-1-055-4; DOI:10.1585/pfr.4.055
[28] Fernandez A M, Guzman A M, Vera E, Rodriguez Paez J E, Efectos de
fotodegradación propiciados por recubrimientos de TiO2 y TiO2 -SiO2 obtenidos por
Sol-Gel. Boletín de la Sociedad Española de Cerámica y Vidrio V, 47(5) (2008) 259-
266.
[29] Seiler H, Sigel H, Dekker M, Handbook of toxicity of inorganic compounds, New York,
1998.
[30] Kobayashi E, Wang T, Doi H, Mechanical properties and corrosion resistance of Ti6Al-7Nb alloy dental castings. Journal of Materials Science: Materials in Medicine, 9
(1998) 567-574.
[31] Łaskawiec J, Michalik R, Theoretical and application issues in implants, Publishing
House of Silesian University of Technology, Gliwice, 2002 (in Polish).
[32] Simka W, Autoreferat habilitacyjny, Wydział Chemiczny Politechniki Śląskiej, 2013, 1-
18.
[33] Browne R C, Vanadium Poisoning from Gas Turbines. British Journal of Industrial
Medicine, 2(12) (1955) 57-59.
[34] Hulcher F H, Spectrophotometric Determination of Vanadium in Biological Material.
Analytical Chemistry, 32 (1960) 1183-1185.
[35] Krewski D, Yokel R A, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J,
Mahfouz A M, Rondeau V, Human health risk assessment for aluminium, aluminium
oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B Crit. Rev., 10(1) (2007)
1-269.
[36] Jacobs J J, Skipor A K, Black J, Urban R, Galante J O, Release and excretion of metal
in patients who have a total hip-replacement component made of titanium-base alloy.
The Journal of Bone and Joint Surgery, 73 (1991) 1475-1486.
[37] Ku C.H., Pioletti D.P., Browne M., Gregson P.J., Effect of different Ti–6Al–4V surface
treatments on osteoblasts behaviour, Biomaterials 23 (2002) 1447-1454.
[38] Bellows C G, Heersche J N, Aubin J E, Aluminium accelerates osteoblastic
differentiation but is cytotoxic in long-term rat calvaria cell cultures. Calcified Tissue
International, 65 (1999) 59-65.
[39] Aluminum CAS # 7429-90-5, PUBLIC HEALTH STATEMENT, Agency for Toxic
Substances and Disease Registry, Division of Toxicology and Environmental
Medicine, http://www.atsdr.cdc.gov Atlanta (2008)
[40] Davidson J A, Mishra A K, Kovasc P, Poggie R A, New Surface-Hardened, LowModulus, Corrosion-Resistant Ti-13Nb-13Zr Alloy for Total HIP Arthroplasty. BioMedical Materials and Engineering, 4 (1994) 231-243.
[41] Landsberg J P, McDonald B, Watt F, Absence of aluminium in neuritic plaque cores in
Alzheimer’s disease. Nature, 360 (1992) 65-68.
[42] Winship K A, Toxicity of tin and its compounds. Adverse Drug React Acute Poisoning
Rev., 7(1) (1988) 19-38.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.