World Scientific News
EISSN 2392-2192
  • Login
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
SUBMIT ARTICLE
Register
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
World Scientific News
No Result
View All Result
Home 2023

Numerical Investigations of the Impact of Peclet Number on the Transient Nonlinear Thermal Response of Radiating-Convecting Internally-Heated Porous Moving Fin using Method of Lines

Authors: Gbeminiyi Sobamowo, Rotimi O. Fawumi, Ridwan O. Olagbadamosi, Bukola O. Falomo, 185 (2023) 83-104

2024-01-05
Reading Time: 9 mins read
0

ABSTRACT

In the present study, numerical method of lines is applied to study the impact of Peclet number on the transient nonlinear thermal behaviour of moving porous fins. Through energy analysis of the passive device, the transient thermal model of the fin is developed. The nonlinear partial differential equation is nondimensionalized to directly establish the Peclet number in the adimensional thermal model. Thereafter, the model is solved by numerical method of lines and the influences of Peclet number on the thermal response of the fins is explored. The results of the numerical investigations illustrate that the temperature of the fin is enhanced when the Peclet number is augmented. This shows that low value of Peclet number favours cooling enhancement. Also, under varying Peclet number, the extended surface thermal distribution decreases as porous, conductive-convective, conductive-radiative and porous terms increase. However, the temperature of the passive device rises as internal heat generation, ambient and surface temperatures is heightened. This study has given better physical insights and understanding of the thermal problems in extended surfaces.

 

References

  • Torabi, H. Yaghoobi and A. Aziz Analytical Solution for Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity. Int. J. Thermophysics (2012) 33: 924-941
  • Aziz, F. Khani, Convection-radiation from a continuously moving fin of variable thermal conductivity. J. of Franklin Institute 348 (2011) 640-651
  • Aziz and R. J. Lopez, Convection -radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing, I. J. of Thermal Sciences 50 (2011) 1523-1531
  • Singh, D. Kumar, K. N. Rai. Wavelet Collocation Solution for Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity. International Journal of Engineering and Advanced Technology, 2(4), 2013
  • Aziz, M. Torabi, Covective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coef ficient and surface emissivity with temperature, Heat Transfer Asian Research 41 (2) (2012)
  • Ma, Y. Sun, B. W. Li, H. Chen Spectral collocation method for radiative–conductive porous fin with temperature dependent properties. Energy Conversion and Management 111 (2016) 279–288
  • Sun J. Ma, B. W. Li, H. Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity. International Journal of Thermal Sciences 90 (2015) 187-196
  • S.V. R. Kanth and N. U. Kumar. Application of the Haar Wavelet Method on a Continuously Moving Convective-Radiative Fin with Variable Thermal Conductivity. Heat Transfer – Asian Research. Volume 42, Issue 4, June 2013, Pages 335-351
  • S. V. R. Kanth and N. U. Kumar. A Haar Wavelet Study on Convective-Radiative Fin under Continuous Motion with Temperature-Dependent Thermal Conductivity. Walailak J Sci & Tech. 11(3) (2014) 211-224
  • K. Singla and D. Ranjan. Application of decomposition method and inverse parameters in a moving fin, Energy Conversion and Management, 84 (2014) 268-281
  • Moradi and R. Rafiee. Analytical Solution to Convection-Radiation of a Continuously Moving Fin with Temperature-Dependent thermal conductivity, Thermal Science, 17 (2003) 1049-1060
  • S. Dogonchi and D. D. Ganji. Convection-Radiation heat transfer study of moving fin with temperature dependent thermal conductivity, heat transfer coefficient and heat generation, Applied Thermal Engineering, 103(2016), 705-712
  • S. Sun and J. Ma. Application of Collocation Spectral Method to Solve a Convective – Radiative Longitudinal Fin with Temperature Dependent Internal Heat Generation, Thermal Conductivity and Heat Transfer Coefficient, Journal of Computational and Theoretical Nano-Science, 12 (2015) 2851-2860
  • G. Sobamowo, A. A. Yinusa, M. O. Salami, O. C. Osih, B. O. Adesoye. Heat Transfer Analysis of a Rectangular Moving Porous Fin with Temperature-Dependent Thermal Conductivity and Internal Heat Generation: Comparative and Parametric Studies. Engineering Advances. 1(2) (2021) 50-66
  • P. Ndlovu and R. J. Moitsheki. Analysis of temperature distribution in radial moving fins with temperature dependent thermal conductivity and heat transfer coefficient. International Journal of Thermal Sciences 145 (2019) 106-115
  • P. Ndlovu and R. J. Moitsheki. A Study of Transient Heat Transfer through a Moving Fin with Temperature Dependent Thermal Properties. Defect and Diffusion Forum 401 (2020) 1-13
  • P. Ndlovu and R. J. Moitsheki. Analysis of a Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity. International Journal of Nonlinear Sciences and Numerical Simulation. 21(3-4) (2020). https://doi.org/10.1515/ijnsns-2018-0206
  • Sowmya, B. J. Gireesha, M. Madhu, Macha 2020. Analysis of a fully wetted moving fin with temperature‐dependent internal heat generation using the finite element method. Heat Transfer, 49(4) (2020) 1939-1954
  • J., Gireesha, G., Sowmya, S., Sindhu. Analysis of thermal behavior of moving longitudinal porous fin wetted with water-based SWCNTs and MWCNTs. Heat Transfer, 49(4) (2020) 2044-2058
  • Sowmya, Bijjanal Jayanna Gireesha, Analysis of heat transfer through different profiled longitudinal porous fin by differential transformation method, Heat Transfer, 10.1002/htj.22394, 51, 2, (2165-2180), (2021)
  • Gireesha, B.J., Sowmya, G. and Macha, M. (2022). Temperature distribution analysis in a fully wet moving radial porous fin by finite element method, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 32 No. 2, pp. 453-468. https://doi.org/10.1108/HFF-12-2018-0744
  • M. Najafabadi, T. H. Rostami, K. Hosseinzadeh, D. D. Ganji. Thermal analysis of a moving fin using the radial basis function approximation. Heat transfer, 50(8) (2021) 7553-7567
  • G. Sobamowo, A. A. Yinusa, O. P. Popoola, M. A. Waheed. Transient Thermal Analysis of Convective-Radiative Moving Fin under the Influences of Magnetic Field and Time-dependent Boundary Condition. Computational Sciences and Engineering 1(2) (2021) 139-152
  • G. Sobamowo, M. O. Salami, A. A. Yinusa. Thermal Analysis of a Convective-Radiative Moving Porous Trapezoidal Fin with Variable Thermal Properties and Internal Heat Generation using Finite Element Method. World Scientific News 163 (2022) 139-157
  • Nabati, M., Taherifar, S. & Jalalvand, M. Sinc–Galerkin approach for thermal analysis of moving porous fin subject to nanoliquid flow with different shaped nanoparticles. Math Sci (2021). https://doi.org/10.1007/s40096-021-00387-4
  • Gireesha B, Sowmya G, Gorla RSR. Nanoparticle shape effect on the thermal behaviour of moving longitudinal porous fin. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems. 2020; 234(3-4): 115-121. doi:1177/2397791420915139
  • J. Gireesha, G. Sowmya, M. I. Khan, et al. Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection. Comput Meth Prog Bio 2019; 185: 105166
  • Turkyilmazoglu. Efficiency of the longitudinal fins of trapezoidal profile in motion. Journal of Heat Transfer. 2017, 30(4) (2020) 1867-1879
  • G. Sobamowo and M. A. Waheed. Analytical investigation of heat transfer in a moving convective porous fin with temperature dependent thermal conductivity and internal heat generation. World Scientific News 150 (2022) 1-21
  • A. Oguntala, M. G. Sobamowo, A. A. Yinusa and R. ABD-Alhameed. Determination of Proper Fin Length of a Convective-Radiative Moving Fin of Functionally Graded Material Subjected to Lorentz Force. Defect and Diffusion Forum, 401 (2020) 14-24
  • J. Gireesha, G. Sowmya, M. Ijaz Khan, Hakan F. Öztop, Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection, Computer Methods and Programs in Biomedicine, Volume 185, 2020, 105166, https://doi.org/10.1016/j.cmpb.2019.105166
  • G. Sobamowo, O. M. Kamiyo, A. A. Yinusa, and M. O. Salami. Exploration of the effects of fin geometry and material properties on thermal performance of convective-radiative moving fins. Eng. Appl. Sci. Lett. 2019, 2(3), 14-29
  • G. Sobamowo, O. M. Kamiyo, M. O. Salami, A. A. Yinusa. Thermal assessment of a convective porous moving fins of different material properties using Laplace-variational iterative method. World Scientific News 139(2) (2020) 135-154.
  • Jemiseye, M. G. Sobamowo and O. Olayiwola. Transient Thermal Cooling of Electronics Systems using Functional Graded Fins: Hybrid Computational Analysis. The Journal of Engineering and Exact Sciences 9(4):1-15. 10.18540/jcecvl9iss4pp15810-01e
  • G. Sobamowo, J. N. Ojuro, O. K. Onanuga, A. M. O. Siqueira and J. C. C. Campos. Explicit Exact Solutions of Nonlinear Transient Thermal Models of a Porous Moving Fin using Laplace transform – Exp-function method. The Journal of Engineering and Exact Sciences. 09(10), (2023) 1-17, DOI:10.18540/jcecvl9iss10pp15972-01e
  • Jaluria, A.P. Singh, Temperature distribution in a moving material subjected to surface energy transfer, Computer Methods in Applied Mechanics and Engineering 41 (1983) 145–156
  • Jaluria. Transport from continuously moving materials undergoing thermal processing, Annual Reviews of Heat Transfer, vol. 4, Academic Press, 1992, pp. 187–245 (Chapter Four).
  • A. Liskovets. The method of lines (Review), Differential Equations, 1 (1965), 1308 – 1323. (English version)
  • S. Xanthis, The numerical method of lines and ODE solvers can provide a new powerful computational fracture mechanics tool, Int. Conference on Computational Mechanics, Tokyo, Japan (1986).
  • Shou-gao. And Y. Si. The vibration and stability analysis of moderate thick plates by the method of lines. Applied Mathematics and Mechanics 13(6) (1992).
  • G. Verwer and J. M. Sanz-Serna. (1984). Convergence of method of lines approximations to partial differential equations, Computing, 33(1984), 297-313
  • C. Reddy and L. N. Trefethen. Stability of the method of lines, Numerische Mathematik, 62(1)(1992), 235-267
  • Zafarullah. Application of the method of lines to parabolic partial differential equations with error estimates, Journal of the Association for Computing Machinery, 17 (1970), 294-302
  • Campo and M. Arıcı. Semi-analytical, piecewise temperature–time distributions in solid bodies of regular shape affected by uniform surface heat flux: Combination of the Method of Lines (MOL) and the eigenvalue method, International Communications in Heat and Mass Transfer, 108 (2019) 104276
  • Campo A. The Numerical Method of Lines facilitates the instruction of unsteady heat conduction in simple solid bodies with convective surfaces. International Journal of Mechanical Engineering Education 2022; 50(1): 3-19. doi:1177/0306419020910423
  • Campo and J. Garza. Transversal Method of Lines (TMOL) for unsteady heat conduction with uniform surface heat flux, ASME Journal of Heat Transfer, 136 (2014), 111302
  • Campo and Y. Masip-Macía. Semi-analytical solution of unsteady heat conduction in a large plane wall with convective boundary conditions for the “small-time” sub-domain using the Transversal Method of Lines (TMOL), International Journal of Numerical Methods in Heat and Fluid Flow, 29(2) (2019) 536-552
  • Campo and J. Sieres. Semi-analytical treatment of the unsteady heat conduction equation with prescribed surface temperature: The Transversal Method Of Lines (TMOL) delimited to the “small time” sub-domain, International Communications in Heat and Mass Transfer, 116(2020). Article number 1046872020
  • Campo and D. J. Celentano. Improved Transversal Method of Lines (ITMOL) for unidirectional, un-steady heat conduction in regular solid bodies with heat convection exchange to nearby fluids, Computational Thermal Sciences: An International Journal, 12(2), 179-189, 2020
  • S. Hu and W. E. Schiesser, An adaptive grid method in the numerical method of lines, in Advances in Computer Methods for Partial Differential Equations, R. Vichnevetsky and R. Stepleman, Eds., 1981, 305–311
  • E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Academic Press, San Diego, CA, USA, 1991.
  • Hamdi, W. H. Enright, Y. Ouellet, and W. E. Schiesser, Method of lines solutions of the extended Boussinesq equations, Journal of Computational and Applied Mathematics, 183(2) (2005) 327-342
  • Saucez, A. Vande Wouwer, W. E. Schiesser, and P. Zegeling, Method of lines study of nonlinear dispersive waves, Journal of Computational and Applied Mathematics, 168(1-2) (2004), 1-2, 413–423
  • G. Verwer and J. M. Sanz-Serna. Convergence of method of lines approximations to partial differential equations, Computing, 33(184) 297-313
  • Schiesser, W.E. The Numerical Method of Lines: Integration of Partial Differential Equations. 2nd Edition, Clarendon Presses, Oxford, 1978.
  • Sharaf, A.A. and Bakodah, H.O. A Good Spatial Discretization in the Method of Lines. Applied Mathematics and Computation, 171-172 (2005) 1253-1263
  • B. Carver and H. W. Hinds. (1978) The Method of lines and the Advective Equation. Simulation, 31 (1978) 59-69
  • Han and Z. Huang, The Direct Method of Lines for Numerical Solution of Interface Problem, Comput. Mehtods Appl. Mech. Engrg. 171, (1999) 61-75
  • Ismail, F. Karim, G.D. Roy and M. Ashaque, Numerical Modeling of Tsunami Via The Method of Lines, Word Academy of Science, Engineering and Technology, 32(35) (2007) 177-185
  • J. Al-Majid, Method of Lines Analysis of Gaussian Beam Coupling to Dielectric Slab Waveguide, M.Sc. Thesis in Electrical Engineering, University of Petroleum & Minerals Dhahran, Saudi Arabia, 1994.
  • Celi, State-Space Representation of Vortex Wakes by The Method of Lines, J. of the American Helicopter Society, 50(2) (2005) 195-205
  • K. Madsen, The Method of Lines for The Numerical Solution of Partial Differential Equations, ACM SIGNUM Newsletter. 10(10) (1975) 5-7
  • J. Noye and H. H. Tan, Finite Difference Methods for Solving Two-Dimensional Advection-Diffusion Equation, Int. J. num. Meths. in Fluid, 9(1989) 75-98
  • Özdes and E. N. Aksan, The Method of Lines Solution of The Korteweg-de Vries Equation for Small Times, Int. J. Contemp. Math. Sciences 1, 13 (2006) 639-650
  • Pamuk and A. Erdem, The Method of Lines for The Numerical Solution of A Mathematical Model for Capillary Formation: The Role of Endothelial Cells in The Capillary, Appl. Math. and Comput. 186 (2007),831-835
  • Han and Z. Huang, The Direct Method of Lines for Numerical Solution of Interface Problem, Comput. Mehtods Appl. Mech. Eng 171(1999) 61-75
  • Ismail, F. Karim, G.D. Roy and M. Ashaque, Numerical Modeling of Tsunami Via The Method of Lines, Word Academy of Science, Engineering and Technology, 32(35) (2007) 177-185
  • Javidi, A Numerical Solution of Burger’s Equation Based on Modified Extended BDF Scheme, Int. Math. Forum, 1(32) (2006) 1565-1570
  • -P. Kauthen, The Method of Lines for Parabolic Partial Integro-Differential Equations, J. of Integral Equations and Applications, 4(1) (1992), 69-81
  • Voigt, A., Line Method Approximations to Cauchy Problem for Nonlinear Parabolic Differential Equations, Math. 23 (1974) 23-36
  • C. Thompson. Convergence and Error Estimates for the Method of Lines for Certain Nonlinear Elliptic and Elliptic-Parabolic Equations, SIAM J. Numer. Anal. 13(l), 1976, 27-43
  • M. Loeb and W. E. Schiesser. Stiffness and Accuracy in the Method of Lines Integration of Partial Differential Equations. Stiff Differential Systems, ed. R. A. Willoughby, Plenum Press, New York, 1974, pp. 229-243.
  • K. Madsen and R. E. Sincovec. The Numerical Method of Lines for the Solution of Nonlinear Partial Differential Equations, Lawrence Livermore Laboratory UCRL-75142, September 1973.
  • V. Agarwal, G. Chaturvedi, Agrawal. Modern Mathematical Techniques for Analysis of Temperature Distribution in Straight Profile Fins. International Journal of Engineering Research & Technology 3(3), 2156-2160, 2014

Download all article in PDF

WSN 185 (2023) 83-104


 

ADVERTISEMENT
Tags: Moving finNumerical method of linesPeclet numberPorous Finthermal analysisTransient response
ShareTweetPin
Next Post

Recent Progress and Challenges of Genetically Modified Crops

Risk based characterization and modeling of soils contaminated with Volatile Organic Compounds (VOCs) and (benzene, toluene, ethylbenzene, and xylene (BTEX)) in parts of Bonny Island, Rivers State, Nigeria

View free articles

  • Open access

View Articles

  • 2013 (5)
    • Volume 1 (2013), pp. 1-14 (2)
    • Volume 2 (2013), pp. 1-29 (3)
  • 2014 (13)
    • Volume 3 (2014), pp. 1-21 (3)
    • Volume 4 (2014), pp. 1-16 (2)
    • Volume 5 (2014), pp. 1-36 (4)
    • Volume 6 (2014), pp. 1-23 (3)
  • 2015 (109)
    • Volume 10 (2015), pp. 1-100 (5)
    • Volume 11 (2015), pp. 1-96 (6)
    • Volume 12 (2015), pp. 1-76 (6)
    • Volume 13 (2015), pp. 1-130 (7)
    • Volume 14 (2015), pp. 1-55 (1)
    • Volume 15 (2015), pp. 1-25 (2)
    • Volume 16 (2015), pp. 1-158 (9)
    • Volume 17 (2015), pp. 1-63 (1)
    • Volume 18 (2015), pp. 1-127 (8)
    • Volume 19 (2015), pp. 1-111 (7)
    • Volume 20 (2015), pp. 1-336 (1)
    • Volume 21 (2015), pp. 1-89 (7)
    • Volume 22 (2015), pp. 1-119 (8)
    • Volume 23 (2015), pp. 1-127 (10)
    • Volume 24 (2015), pp. 1-87 (6)
    • Volume 7 (2015), pp. 1-237 (9)
    • Volume 8 (2015), pp. 1-203 (7)
    • Volume 9 (2015), pp. 1-160 (9)
  • 2016 (517)
    • Volume 25 (2016), pp. 1-16 (2)
    • Volume 26 (2016), pp. 1-19 (2)
    • Volume 27 (2016), pp. 1-16 (2)
    • Volume 28 (2016), pp. 1-100 (7)
    • Volume 29 (2016), pp. 1-95 (6)
    • Volume 30 (2016), pp. 1-142 (10)
    • Volume 31 (2016), pp. 1-124 (8)
    • Volume 32 (2016), pp. 1-81 (9)
    • Volume 33 (2016), pp. 1-121 (8)
    • Volume 34 (2016), pp. 1-145 (10)
    • Volume 35 (2016), pp. 1-133 (10)
    • Volume 36 (2016), pp. 1-152 (10)
    • Volume 37 (2016), pp. 1-303 (18)
    • Volume 38 (2016), pp. 1-59 (1)
    • Volume 39 (2016), pp. 1-30 (2)
    • Volume 40 (2016), pp. 1-299 (20)
    • Volume 41 (2016), pp. 1-287 (36)
    • Volume 42 (2016), pp. 1-316 (21)
    • Volume 43(1,2,3) (2016), pp. 1-157 (3)
      • Volume 43, Issue 1 (2016), pp. 1-55 (1)
      • Volume 43, Issue 2 (2016), pp. 56-103 (1)
      • Volume 43, Issue 3 (2016), pp. 104-157 (1)
    • Volume 44 (2016), pp. 1-301 (20)
    • Volume 45(1,2) (2016), pp. 1-383 (21)
      • Volume 45, Issue 1 (2016), pp. 1-62 (1)
      • Volume 45, Issue 2 (2016), pp. 63-383 (20)
    • Volume 46 (2016), pp. 1-286 (20)
    • Volume 47(1,2) (2016), pp. 1-350 (21)
      • Volume 47, Issue 1 (2016), pp. 1-61 (1)
      • Volume 47, Issue 2 (2016), pp. 62-350 (20)
    • Volume 48 (2016), pp. 1-163 (17)
    • Volume 49(1,2) (2016), pp. 1-404 (21)
      • Volume 49, Issue 1 (2016), pp. 1-58 (1)
      • Volume 49, Issue 2 (2016), pp. 59-404 (20)
    • Volume 50 (2016), pp. 1-316 (20)
    • Volume 51 (2016), pp. 1-71 (7)
    • Volume 52 (2016), pp. 1-275 (20)
    • Volume 53(1,2,3) (2016), pp. 1-429 (22)
      • Volume 53, Issue 1 (2016), pp. 1-66 (1)
      • Volume 53, Issue 2 (2016), pp. 67-109 (1)
      • Volume 53, Issue 3 (2016), pp. 110-429 (20)
    • Volume 54 (2016), pp. 1-299 (20)
    • Volume 55 (2016), pp. 1-288 (20)
    • Volume 56 (2015), pp. 1-266 (20)
    • Volume 57 (2016), pp. 1-570 (53)
    • Volume 58 (2016), pp. 1-161 (10)
    • Volume 59 (2016), pp. 1-128 (10)
    • Volume 60 (2016), pp. 1-120 (10)
  • 2017 (481)
    • Volume 61(1,2) (2017), pp. 1-194 (11)
      • Volume 61, Issue 1 (2017), pp. 1-51 (1)
      • Volume 61, Issue 2 (2017), pp. 52-194 (10)
    • Volume 62 (2017), pp. 1-146 (10)
    • Volume 63 (2017), pp. 1-240 (1)
    • Volume 64 (2017), pp. 1-140 (10)
    • Volume 65 (2017), pp. 1-175 (10)
    • Volume 66 (2017), pp. 1-300 (20)
    • Volume 67(1,2,) (2017), pp. 1-389 (21)
      • Volume 67, Issue 1 (2017), pp. 1-67 (1)
      • Volume 67, Issue 2 (2017), pp. 68-389 (20)
    • Volume 68 (2017), pp. 1-141 (1)
    • Volume 69 (2017), pp. 1-253 (20)
    • Volume 70(1,2) (2017), pp. 1-321 (21)
      • Volume 70, Issue 1 (2017), pp. 1-50 (1)
      • Volume 70, Issue 2 (2017), pp. 51-321 (20)
    • Volume 71 (2017), pp. 1-219 (18)
    • Volume 72 (2017), pp. 1-478 (46)
    • Volume 73 (2017), pp. 1-133 (15)
    • Volume 74 (2017), pp. 1-287 (20)
    • Volume 75 (2017), pp. 1-111 (12)
    • Volume 76 (2017), pp. 1-199 (20)
    • Volume 77(1,2) (2017), pp. 1-380 (21)
      • Volume 77, Issue 1 (2017), pp. 1-102 (1)
      • Volume 77, Issue 2 (2017), pp. 103-380 (20)
    • Volume 78 (2017), pp. 1-230 (24)
    • Volume 79 (2017), pp. 1-89 (1)
    • Volume 80 (2017), pp. 1-323 (20)
    • Volume 81(1,2) (2017), pp. 1-312 (21)
      • Volume 81, Issue 1 (2017), pp. 1-47 (1)
      • Volume 81, Issue 2 (2017), pp. 48-312 (20)
    • Volume 82 (2017), pp. 1-90 (1)
    • Volume 83 (2017), pp. 1-239 (20)
    • Volume 84 (2017), pp. 1-92 (1)
    • Volume 85 (2017), pp. 1-73 (10)
    • Volume 86(1,2,3) (2017), pp. 1-370 (22)
      • Volume 86, Issue 1 (2017), pp. 1-58 (1)
      • Volume 86, Issue 2 (2017), pp. 59-122 (1)
      • Volume 86, Issue 3 (2017), pp. 123-370 (20)
    • Volume 87 (2017), pp. 1-255 (20)
    • Volume 88(1,2) (2017), pp. 1-226 (11)
      • Volume 88, Issue 1 (2017), pp. 1-57 (1)
      • Volume 88, Issue 2 (2017), pp. 58-226 (10)
    • Volume 89 (2017), pp. 1-321 (33)
    • Volume 90 (2017), pp. 1-270 (20)
  • 2018 (486)
    • Volume 100 (2018), pp. 1-253 (20)
    • Volume 101 (2018), pp. 1-252 (20)
    • Volume 102 (2018), pp. 1-223 (20)
    • Volume 103 (2018), pp. 1-249 (18)
    • Volume 104 (2018), pp. 1-492 (40)
    • Volume 105 (2018), pp. 1-232 (20)
    • Volume 106 (2018), pp. 1-244 (20)
    • Volume 107 (2018), pp. 1-232 (20)
    • Volume 108 (2018), pp. 1-244 (20)
    • Volume 109 (2018), pp. 1-266 (19)
    • Volume 110 (2018), pp. 1-243 (20)
    • Volume 111 (2018), pp. 1-181 (17)
    • Volume 112 (2018), pp. 1-251 (20)
    • Volume 113 (2018), pp. 1-250 (26)
    • Volume 114 (2018), pp. 1-264 (20)
    • Volume 91 (2018), pp. 1-137 (10)
    • Volume 92(1,2) (2018), pp. 1-399 (21)
      • Volume 92, Issue 1 (2018), pp. 1-138 (1)
      • Volume 92, Issue 2 (2018), pp. 139-399 (20)
    • Volume 93 (2018), pp. 1-141 (15)
    • Volume 94(1,2) (2018), pp. 1-332 (21)
      • Volume 94, Issue 1 (2018), pp. 1-71 (1)
      • Volume 94, Issue 2 (2018), pp. 72-332 (20)
    • Volume 95 (2018), pp. 1-272 (20)
    • Volume 96 (2018), pp. 1-250 (20)
    • Volume 97 (2018), pp. 1-284 (20)
    • Volume 98 (2018), pp. 1-232 (20)
    • Volume 99 (2018), pp. 1-229 (19)
  • 2019 (467)
    • Volume 115 (2019), pp. 1-268 (20)
    • Volume 116 (2019), pp. 1-252 (19)
    • Volume 117 (2019), pp. 1-242 (20)
    • Volume 118 (2019), pp. 1-280 (20)
    • Volume 119 (2019), pp. 1-253 (20)
    • Volume 120(1,2) (2019), pp. 1-295 (21)
      • Volume 120, Issue 1 (2019), pp. 1-59 (1)
      • Volume 120, Issue 2 (2019), pp. 60-295 (20)
    • Volume 121 (2019), pp. 1-100 (13)
    • Volume 122 (2019), pp. 1-262 (20)
    • Volume 123 (2019), pp. 1-273 (20)
    • Volume 124(1,2) (2019), pp. 1-333 (21)
      • Volume 124, Issue 1 (2019), pp. 1-85 (1)
      • Volume 124, Issue 2 (2019), pp. 86-1-333 (20)
    • Volume 125 (2019), pp. 1-259 (20)
    • Volume 126 (2019), pp. 1-298 (20)
    • Volume 127(1,2,3) (2019), pp. 1-376 (22)
      • Volume 127, Issue 1 (2019), pp. 1-55 (1)
      • Volume 127, Issue 2 (2019), pp. 56-105 (1)
      • Volume 127, Issue 3 (2019), pp. 106-376 (20)
    • Volume 128(1,2) (2019), pp. 1-432 (21)
      • Volume 128, Issue 1 (2019), pp. 1-70 (1)
      • Volume 128, Issue 2 (2019), pp. 71-432 (20)
    • Volume 129 (2019), pp. 1-267 (20)
    • Volume 130 (2019), pp. 1-308 (20)
    • Volume 131 (2019), pp. 1-288 (20)
    • Volume 132 (2019), pp. 1-312 (24)
    • Volume 133 (2019), pp. 1-274 (20)
    • Volume 134(1,2) (2020), pp. 1-338 (21)
      • Volume 134, Issue 1 (2019), pp. 1-51 (1)
      • Volume 134, Issue 2 (2019), pp. 52-338 (20)
    • Volume 135 (2019), pp. 1-298 (22)
    • Volume 136 (2019), pp. 1-246 (16)
    • Volume 137 (2019), pp. 1-236 (14)
    • Volume 138(1,2) (2019), pp. 1-294 (13)
      • Volume 138, Issue 1 (2019), pp. 1-64 (1)
      • Volume 138, Issue 2 (2019), pp. 65-294 (12)
  • 2020 (179)
    • Volume 139(1,2) (2020), pp. 1-258 (13)
      • Volume 139, Issue 1 (2020), pp. 1-60 (1)
      • Volume 139, Issue 2 (2020), pp. 61-258 (12)
    • Volume 140 (2020), pp. 1-184 (10)
    • Volume 141 (2020), pp. 1-155 (10)
    • Volume 142 (2020), pp. 1-194 (12)
    • Volume 143 (2020), pp. 1-261 (16)
    • Volume 144 (2020), pp. 1-449 (30)
    • Volume 145 (2020), pp. 1-408 (30)
    • Volume 146 (2020), pp. 1-289 (18)
    • Volume 147 (2020), pp. 1-208 (12)
    • Volume 148 (2020), pp. 1-121 (8)
    • Volume 149 (2020), pp. 1-165 (10)
    • Volume 150 (2020), pp. 1-181 (10)
  • 2021 (143)
    • Volume 151 (2021), pp. 1-122 (8)
    • Volume 152 (2021), pp. 1-125 (8)
    • Volume 153(1,2) (2021), pp. 1-215 (13)
      • Volume 153, Issue 1 (2021), pp. 1-42 (1)
      • Volume 153, Issue 2 (2021), pp. 43-215 (12)
    • Volume 154 (2021), pp. 1-174 (10)
    • Volume 155 (2021), pp. 1-154 (10)
    • Volume 156 (2021), pp. 1-191 (12)
    • Volume 157 (2021), pp. 1-188 (10)
    • Volume 158 (2021), pp. 1-298 (16)
    • Volume 159 (2021), pp. 1-223 (14)
    • Volume 160 (2021), pp. 1-337 (20)
    • Volume 161 (2021), pp. 1-156 (10)
    • Volume 162 (2021), pp. 1-178 (12)
  • 2022 (125)
    • Volume 163 (2022), pp. 1-157 (8)
    • Volume 164 (2022), pp. 1-149 (8)
    • Volume 165 (2022), pp. 1-209 (12)
    • Volume 166 (2022), pp. 1-145 (10)
    • Volume 167 (2022), pp. 1-161 (9)
    • Volume 168 (2022), pp. 1-146 (10)
    • Volume 169 (2022), pp. 1-201 (10)
    • Volume 170 (2022), pp. 1-171 (10)
    • Volume 171 (2022), pp. 1-125 (8)
    • Volume 172 (2022), pp. 1-333 (20)
    • Volume 173 (2022), pp. 1-161 (10)
    • Volume 174 (2022), pp. 1-176 (10)
  • 2023 (132)
    • Volume 175 (2023), pp. 1-108 (8)
    • Volume 176 (2023), pp. 1-174 (10)
    • Volume 177 (2023), pp. 1-136 (8)
    • Volume 178 (2023), pp. 1-165 (10)
    • Volume 179 (2023), pp. 1-164 (10)
    • Volume 180 (2023), pp. 1-162 (12)
    • Volume 181 (2023), pp. 1-215 (12)
    • Volume 182 (2023), pp. 1-265 (18)
    • Volume 183 (2023), pp. 1-226 (14)
    • Volume 184 (2023), pp. 1-154 (10)
    • Volume 185 (2023), pp. 1-191 (10)
    • Volume 186 (2023), pp. 1-160 (10)
  • 2024 (183)
    • Volume 187 (2024), pp. 1-156 (10)
    • Volume 188 (2024), pp. 1-197 (12)
    • Volume 189 (2024), pp. 1-310 (20)
    • Volume 190(1,2) (2024), pp. 1-351 (18)
      • Volume 190, Issue 1 (2024), pp. 1-69 (1)
      • Volume 190, Issue 2 (2024), pp. 70-351 (17)
    • Volume 191 (2024), pp. 1-207 (12)
    • Volume 192 (2024), pp. 1-319 (20)
    • Volume 193(1,2) (2024), pp. 1-252 (13)
      • Volume 193, Issue 1 (2024), pp. 1-45 (1)
      • Volume 193, Issue 2 (2024), pp. 46-252 (12)
    • Volume 194 (2024), pp. 1-213 (13)
    • Volume 195 (2024), pp. 1-235 (13)
    • Volume 196 (2024), pp. 1-221 (14)
    • Volume 197 (2024), pp. 1-231 (15)
    • Volume 198 (2024), pp. 1-402 (23)
  • 2025 (169)
    • Volume 199 (2025), pp. 1-253 (16)
    • Volume 200 (2025), pp. 1-223 (14)
    • Volume 201 (2025), pp. 1-245 (12)
    • Volume 202 (2025), pp. 1-317 (17)
    • Volume 203 (2025), pp. 1-438 (15)
    • Volume 204 (2025), pp. 1-353 (19)
    • Volume 205 (2025), pp. 1-272 (16)
    • Volume 206 (2025), pp. 1-172 (13)
    • Volume 207 (2025), pp. 1-173 (12)
    • Volume 208 (2025), pp. 1-174 (11)
    • Volume 209 (2025), pp. 1-184 (12)
    • Volume 210 (2025), pp. 1-158 (12)
  • 2026 (21)
    • Volume 211 (2026), pp. (21)
  • Info (6)
  • News (3)
  • Open access (460)
  • Premium (38)

Last Articles

  • All
  • Premium
  • Open access

Total Dominating Sets in Wireless Sensor Networks with Application of Dominating Sets

2023-12-30

Denitrifcation rate in the mainstream deammonification

2024-01-30

Enhanced Equal Gain Combiner Development over Rayleigh Fading Channel using Firefly Algorithm

2024-01-10

Popular Articles

  • About Us

    About Us

    0 shares
    Share 0 Tweet 0
  • Submit your Article

    0 shares
    Share 0 Tweet 0
  • Jeevamrut – A Natural Fertilizer

    0 shares
    Share 0 Tweet 0
  • Abstracting & Indexing

    0 shares
    Share 0 Tweet 0
  • Guide for Authors

    0 shares
    Share 0 Tweet 0

Careers

  • All
  • Careers
No Content Available
World Scientific News

World Scientific News (WSN) is an open-access fully peer-reviewed scholarly journal. The monthly – interdisciplinary journal is directed in the first place to scientists who want to publish their findings, insights, observations, conclusions, etc.

READ MORE

Menu

  • Home
  • About Us
  • Editorial Board
  • Guide for Authors
  • Instruction for Authors
  • Abstracting & Indexing
  • Submit your Article
  • Careers
  • News

Other databases

AGRO
CAS
Google Scholar
Google Scholar Metrics
ICZN
ProQuest
Road Directory
ZooBank

EISSN 2392-2192

Login / Register
Privacy Policy
Cookie Policy

made by fixfix

No Result
View All Result
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News

made by fixfix

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.