ABSTRACT
At present risks and uncertainties occur in protecting health for the community. This requires a national health insurance program that can guarantee health care costs. One of the program participants is a resident who works in the informal sector. This group is vulnerable as well as the potential for the implementation of health insurance programs. However, the level of participation of informal sector workers is still low, so an analysis of the constraints affecting it is needed. This study aims to identify categories of informal sector workers and analyze various obstacles faced by informal sector workers to become health insurance participants in the city of Bogor. The method used is the concept of big data with K-means clustering data mining techniques to group informal sector workers along with the constraints that exist in each of these groups. The results showed that there were 3 clusters with very low Social Security Administrator (BPJS) health ownership, namely cluster 1, cluster 3, and cluster 5. Each cluster had different constraints. Cluster 1 has constraints on the number of dependents it has, Cluster 3 has constraints on the gender side that are dominated by women, while Cluster 5 has constraints on the low-income side. Each cluster has a different obstacle resolution recommendation, namely for cluster 1 by registering workers in JKN contribution recipient (PBI) participants, cluster 2 by giving outreach to women who have only focused on men, and for clusters 5 by involving the community as a forum for the empowerment of informal sector workers.
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.