World Scientific News
EISSN 2392-2192
  • Login
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
SUBMIT ARTICLE
Register
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
World Scientific News
No Result
View All Result
Home 2023

Application of kinetic models in batch adsorption processes – A review

Authors: Beniah Obinna Isiuku, Brenda Igbe Ochule, Magaret Chinyelu Enedoh, Ngozi Patricia Ebosie, 186 (2023) 67-93

2024-01-05
Reading Time: 12 mins read
0

ABSTRACT

Population growth in recent times, coupled with large scale industrialization and urbanization activities have greatly contributed to production of very large quantities of pollutants which are injected into the biota at alarming rates. This situation has been causing great concern to environmentalists and health sectors worldwide. Adsorption is superior to all techniques applied in de-polluting the environment due to its environmental friendliness, low cost, easy to design, non-toxicity and other properties. Known precursors used in manufacturing adsorbents are costly. Researches in sourcing adsorbents from cheap materials are in progress. A very important way of predicting mechanisms of adsorption processes, is modeling experimental data obtained with adsorption isotherms to quantify adsorbent adsorption capacity. The time required for adsorption to run, especially in industries is so short that equilibrium is not reached. Hence, process-oriented kinetic models are applied in simulating experimental data. In this work, many kinetic models have been discussed presenting an overall review of the applications of the models as well as their strengths and weaknesses. The validity of any experimental result depends on the closeness of experimental and predicted parameters. This is achieved by use of determination of coefficient, and error functions.

 

References

  • O. Isiuku and F. C. Ibe, Removal of metanil yellow by batch biosorption from aqueous phase on egg membrane: Equilibrium and isotherm studies. Anal. Methods Environ. Chem. J. 2 (2019) 15-26
  • Koumanova, P. Peeva, S. J. Allen, K. A. Gallagher and M. G. Healy. Biosorption from aqueous solutions by eggshell membranes and Rhizopus oryzae: equilibrium and kinetic studies. J. Chem. Technol. Biotechnol. 77 (2002) 539-545
  • Boyd, A. W. Adamson and L. S. Myers, The exchange adsorption of ions from aqueous solution by organic zeolites. II; Kinetics. J. Amer. Chem. Soc. 69 (1947) 2836-2848
  • Reichenberg, Properties of ion exchangers, resigns in relation to their structures. III. Kinetics of exchange. J. Amer. Chem. Soc. 75 (1953) 589-597
  • Crank, The Mathematics of Diffusion. Clarendon Press, Oxford, 1956
  • Mittal, V. K. Gupta, A. Malviya and J. Mittal, Process development for the batch and bulk removal and recovery of hazardous, water-soluble azodye (Metanil yellow) by adsorption over waste materials (bottom ash and de-oiled soya). J. Hazard. Mater 151 (2008) 821-832
  • A. Riyanto and E. Prabalaras, The adsorption Kinetics and isotherm of activated carbon from water hyacinth (Echornia crassipes) on Cu(II) In: International Conference on Science and Science Education, IOP Conf. Series: J. Phys: Conf. Series 1307 (2019) 012002; doi:10.1088/1742-6596/1307/1/012002
  • C. Nwidi and J. C. Agunwamba, Comparative analysis of some existing Kinetic models with proposed models in the biosorption of three heavy metals in a flow-batch reactor using five selected micro-organisms. Nig. J. Technol. 35(3) (2016) 681-685
  • [9] P. D. Rocha, A. S. Franca and L. S. Oliveira, Batch and column studies of phenol adsorption by an activated carbon based on acid treatment of corn cobs. IACSIT Int’l J. Eng. Technol. 7(6) (2015) 459-464
  • Sampranpiboon and X. Feng, Kinetic models on chromium (VI) adsorption onto carbonized oil palm kernel with potassium hydroxide activation. Int’l J. Adv. Chem. Eng. Biol. Sci. 3(1) (2016) 66-71
  • Ahmadi, L. Mohammadi, A. Radhar, S. Radhar, R. Dehghani, C. A. Igwegbe and G. Z. Kyzas, Acid dye remval from aqueous solution using Neodymium (III) oxide nanoadsorbents. Nanomaterials 10 (2020) 556
  • S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: A comparative linear and non-linear methods. Water Res. 40 (2006) 119-125
  • Yildiz, Kinetic and isotherm analysis of Cu (II) adsorption onto almond shell (Prunus dulcis). Ecol. Chem. Eng. Sci. 24(I) (2017) 87-106
  • M. Salman, V. O. Njoku and B. H. Hameed, Bentazon and carbofuran adsorption onto date seed activated carbon: Kinetics and equilibrium. Chem. Eng. J. 173 (2011) 361-368
  • Li, R. Hou, Y. Chen and H. Chen, Removal of hexavalent chromium from aqueous solution using sulphonated peat. Water 11 (2019) 1980; doi:10.3390/w11101980
  • W. Kajjumba, S. Emiks, A. Ongen, H. K. Ozcan and S. Aydin, Modeling of Adsorption Kinetic Processes – Errors, Theory and Application (In) Advanced sorption Process Applications, Serpil Edebali Ed., Selc, Uk University, Turkey 2018; doi:10.5772/intechopen.80495
  • I. Unuabonah and N. A. Oladoja, 5-Modeling in Adsorption Fundamentals and Applications. Composite nanoadsorbents. Micro and Nano Technologies 2019, 85-118. https://doi.org/10.1016/8978.0-12-814132.00005-8
  • R. Sahoo and B. Prelot, Adsorption processes for te removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology, Nanomaterials for the detection and removal of wastewater pollutants. Micro and Nano Technologies (2020) 161-222
  • L. Tan and B. H. Hameed, Insight into the adsorption Kinetic Models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 74 (2017) 25-48
  • Yang and B. Al-Duri, Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J. Colloid Interf. Sci. 287(1) (2005) 25-34
  • I-H. T. Kuete, D. R. T. Tchuifon, G. N. Ndifor-Angwafor, A. T. Kamdem and S. G. Anagho, Kinetic, Isotherm and thermodynamic studies of the adsorption of thymol blue onto powdered activated carbons from Garcinia cola nut shells impregnated with H3PO4 and KOH: non-linear regression analysis. Encapsulation Adsorption Sci. 10 (2020) 1-27
  • Y-S. Hong, K-R. Sin, Y-U. Ri, J-S. Pak, Y. Jon, C-S. Kim, H-R. Ju and S-H. Ri, A new Kinetic model for multicomponent adsorption in batch systems. chemRxiv, Preprint (2018)
  • Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S. M. Shah and X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by grapheme oxide. J. Colloid Interface Sci. 368 (2012) 540-546
  • S. Ho and G. Mckay, The kinetics of sorption of divalent metal ions onto Sphagnum moss peat. Water Res. 34(3) (2000) 735
  • Vasanth Kumar. Pseudo-second order models for the adsorption of safranin on activated carbon. Comparison of linear and non-linear regression method. J.Hazard Mater. (2006); doi:10.1016/j.jhazmat. 2006.08.018
  • Sobkowsk and A. Czerwinski, Kinetics of carbon dioxide adsorption on platinum electrode. J. Electroanal. Chem. 55 (1974) 391-397
  • Blanchard, M. Maunaye and G. Martin, Removal of heavy metals from water by means of natural zeolites. Water Res. 18 (1984) 1501-507
  • G. Ritchie, Alternative to the Elovich equation for the kinetics of adsorption of gases on solids. J. Chem. Soc. Faraday Transact. 1: Physical Chemistry in Condensed Phases 73 (1977) 1650
  • R. Kulkakarni, T. Revanth, A. Acharya and P. Bhat, Removal of crystal violet from aqueous solution using water hyacinth: Equilibrium, Kinetics and thermodynamics study. Research-Efficient Technol. 3 (2017) 71-77
  • K. Gupta, S. Agarwal and T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185 (2011) 17-23
  • K. Amiri, A. Ghaemi and H. Arjomandi, Experimental, kinetic and isothermal modeling of carbon dioxide adsorption with 13X zeolite in a fixed bed column. Iran. J. Chem. Eng. 16 (1) (2019) 54-69
  • L. Qiu., B. Pan, Q. –J. Zhang, W. –M. Zhang and Q-X. Zhang, Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. 10 (5) (2009) 716
  • A. Inyibor, F. A. Adekola and G. A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Res. Ind. 15 (2016) 14-27
  • T. Mekonnen, E. Alemayehu and B. Lennartz, Removal of phosphate ions from aqueous solutions by adsorption onto leftover coal. Water 12 (2020) 1381. doi:10.3390/w12051381
  • Farouq and N. S. Yousef, Equilibrium and Kinetics studies of adsorption of copper (II) ions on natural biosorbent. Int’l J. Chem. Eng. Appl. 6(5) (2015) 319-324
  • O. Dada, A. F. Adekola and E. O. Odebunmi, Kinetics, mechanism,, isotherm and thermodynamic studies of liquid-phase adsorption of Pb2+ on wood activated carbon supported zerovalent iron (WAC-ZVI) noncomposite. Cogent Chem. 3 (2017) 1351653
  • A. Edet and A. O. Ifelebuegu, Kinetics, isotherm and thermodynamic modeling of the adsorption of phosphates from model waster using recycled brick waste. Process 8 (2020) 665. doi:10.3390/pr8060665
  • Borhan and S. Yousup, J. W. Lim, P. L. Show, Characterization and modeling studies of activated carbon produced from rubber-seed shell using KOH for CO2 adsorption. Process 7 (2019) 855. doi: 10.3390/pr7110855
  • Sutherland and C. Venkobachar, A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, fomes fasciatus. Int. Res. J. Plant Sci. (2010) 107-117
  • Zhu, J. Liu and M. Li, Fundamental studies of novel zwitterionic hybrid membranes: Kinetic model and mechanism insights into strontium removal. The Sci. World J. 2014. https://doi.org/10.1155/2014/485820
  • S. Ho and G. Mckay, Application of Kinetic models to the sorption of copper (II) onto peat. Adsorption Sci. Technol. 20(8) (2002) 797-815
  • Varank, A. Demir, K. Yetilmezsoy, S. Top, E. Sekman and M. S. Bilgili, Removal of 4-nitrophenol from aqueous solution by natural low-cost adsorbents. Indian J. Chem. Technol. 19 (2012) 7-25
  • A. Oladoja, A critical review of the applicability of Avrami fractional Kinetic equation in adsorption – based water treatment studies. Desalination and Water Treatment 2015 (2015) 1-13. doi:10.1080/19443994.2015. 1076355
  • Balarak, F.K. Mostatapour and A. D. Khatibi, Nonlinear isotherms and Kinetics and application error functions for adsorption of tetracycline on Lemna minor. J. Pharm Res. Int’l 23(2) (2018) 1-11
  • Balarak, Y. Mahdavi, E. Bazrafshan, A. H. Mahvi and Y. Esfandyari, Adsorption of fluoride from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetic and thermodynamic parameters. Fluoride 49 (1) (2016) 35-42
  • Ali, The quest for active carbon adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from wastewater. Sep. Purif. Rev. 39 (3-4) (2010) 91-171
  • C. Selcuk, S. Kubilay, A. Savran and A. R. Kul, Kinetics and thermodynamic studies of adsorption of methylene blue from aqueous solutions onto paliurus spina-christi Mill. Fruits and seeds. IOSR J. Appl. Chem. 10(5) (2017) 53-63
  • Ghalehkondabi, A. Fazlali and K. Ketabi, Synthesis and characterization of modified activated carbon (MgO/AC) for methylene blue adsorption: optimization, equilibrium, isotherm and kinetic studies. Water Sci. Technol. 83 (7) (2021) 548
  • C. Lopes, F. S. dos Anjos, E. F. Vieira and A. R. Cestari, An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg (II) with thi chitosan membranes. J. Colloid Interf. Sci. 263 (2) (2003) 542-547
  • Liu, J. Tian, Y. Li, N. Sun, S. Mi, Y. Xie and Z. Chen, Enhanced dyes adsorption from wastewater via Fe3O4 nanoparticles functionalized activated carbon, J. Hazard. Mater. 373 (2019) 397-407
  • F. Machado, S. A. Carmalin, E. C. Lima, S. L. P. Dias, L. D. T. Prola, C. Saucier, M. I. Jauris and F. S. B. Zanella, Adsorption of Alizarin Red S dye by carbon nanotubes: An experimental and theoretical investigation. J. Phys. Chem. 120 (32) (2016) 18296-18306
  • Zhong, Z. Lu, W. Liang, X. Guo and B. Hu, Fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO22+ ion from aqueous solution. Environ. Sci.: Nano. (2020) 1-30. doi: 10.1039/DOEN00793E
  • O. Isiuku and M. O. Onyema, Batch removal of metanil yellow (MY) from aqueous solution by adsorption on HNO3-treated-H3PO4-activated carbon (NATPAAC) from Ginelina Aborea (G. arborea) bark: Kinetic and mechanism studies. World News Nat. Sci. 13 (2017) 1-26
  • J. Ahmed and B. H. Hameed, Insights into the isotherm and Kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: A review. J. Environ. Manage. 252 (2019) 109617
  • Arami, N. Y. Limaee and N. M. Mahmoodia, Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent. Chem. Eng. J. 139 (1) (2008) 2-10
  • O. Dada, D. F. Latona, O. J. Ojediran and O. O. Nath, Adsorption of Cu(II) onto bamboo supported manganese (NS-Mn) nano composite: Effect of operational parameters, Kinetic, isotherms and thermodynamic studies. J. Appl. Sci. Environ. Manage. 20(2) (2016) 409-422
  • O. Oyelude, J. A. M. Awuzda and S. K. Twumasi, Equilibrium, Kinetic and thermodynamic study of removal of eosin yellow from aqueous solution using teak leaf litter powder. Sci. Reports 7(1) (2017) 1-10
  • An, Cu(II) and As(V) adsorption Kinetic characteristic of the multifunctional amino groups in chitosan. Processes 8 (2020) 1194
  • S. Gupta and K. G. Bhattacharya, Kinetics of adsorption of metal ions on inorganic materials. A review. Adv. Colloid Interface Sci.162 (2011) 39-58
  • Qi, G. B. Garnier and F. A. Hoadley, Victorian lignite as an alternative industrial adsorbent-Kinetic studies. Application of Adsorbents for Water Pollution Control, Bentham Science Publishers, Amazon.com 2012, pp. 485-501. Doi: 10.2174/97816080526911120101
  • R. Girish and V. R. Murty, Mass transfer studies on adsorption of phenol from water using Lantana camara forest waste. Int’l J. Chem. Eng. 2016 (2016) 1-11. http://dx.doi.org/10.1155/2016/5809505
  • [62] A. Y. Durson and O. Tepe, Removal of chemazol Reactive Red 195 from aqueous solution by dehydrated beet pulp carbon. Hazard. Mater. 194 (2011) 303-311
  • Aksu and A. Isogbu, Use of agricultural waste sugar beet pulp for the removal of Gemazol turgoise blue-G reative dye from aqueous solution. J. Hazard Mater. 137(1) (2006) 418-430
  • T. Sulak, E. Demirbas and M. Kobya, Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran. Bioresour. Technol. 98(13) (2007) 2590-2598
  • Jansson-Charrier, E. Guibal, J. Roussy, B. Delanghe and P. Le Cloirec, Vanadium (IV) sorption by chitosan: Kinetics and equilibrium. Water Res. 30(2) (1996) 465-475
  • V. Kumar and K. Porkodi, Mass transfer, kinetics and equilibrium studies for te biosorption of methylene blue using Paspalum notatum. J. Hazard. Mater. 146 (1-2) (2007) 214-226
  • M. Walker, L. Hansen, J. –A. Hanna and S. J. Allen, Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Res. 37 (9) (2003) 2081-2089
  • Singha and S. K. Das, Biosorption of Cr (VI) ions from aqueous solutions! Kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surf. B: Biointerf. 84(1) (2011) 221-232
  • L. Guerra and C. Airoldi, Kinetics and modified clay thermodynamic from the Brazilian Amazon region for lead removal. J. Hazard Mater. 159 (2-3) (2008) 412-419
  • K. Naiya, A. K. Bhattacharya and S. K. Das, Removal of Cd(II) from aqueous solutions using clarified sludge. J. Colloid Interf. Sci. 325(1) (2008) 48-56
  • H. Al-Fatlawi and N. M. Neamah, Batch experiment and adsorption isotherm of phosphate removal by using drinking water treatment sludge and red mud, Int’l J. Adv. Res. Sci. Eng. Technol. 2 (3) (2015) 557-571
  • M. Alexander and I. Zayas, Particle size and shape effects on adsorption rate parameters. Environ. Eng. 115(1) (1989) 41-55
  • O. Isiuku, C. E. Eyoh, C. E. Duru and F. C. Ibe, Phosphate ions removal from aqueous phase by batch adsorption on activated (activation before carbonization) biochar derived from rubber pod husk. Current Res. Green Sustainable Chem. 4 (2021) 100136
  • Khezami and R. Capart, Removal of chromium (VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. J. Hazard Mater. 123 (1-3) (2005) 223-231
  • B. Singh, G. Prasad and D. C. Rupainwar, Adsorption technique for the treatment of As (V)-rich effluents. Colloid Surf. A: Physicochem. Eng. Asp. II 1(1-2) (1996) 49-56
  • Dogan M., Ozdemir Y. and Alkan M, Adsorption Kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes and Pigments 75(3) (2007) 701-713
  • K. Traegner and M. T. Suidan, Parameter evaluation for carbon adsorption. J. Environ. Eng. 115(1) (1989) 109-128
  • E. Dάvila-Guzman, F. J. Cerino-Cόrdova, P. E. Diaz-Flores, J. R. Rangel-Mendez, M. N. Sάnchez-Gonzάlez and E. Soto-Regalado, Equilibrium and kinetic studies of ferulic acid adsorption by Amberlite XAD-16. Chem. Eng. J. 183 (2012) 112-116
  • K. Prasad and S. N. Srivastava, Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies. Chem. Eng. J. 146 (1) (2009) 90-97.
  • Polat, M. Molva and M. Polat, Capacity and mechanism of phenol adsorption on lignite. Int’l J. Mineral Process. 79(4) (2006) 264-273
  • Arasteh, M. Masoumi, A. M. Rashidi, L. Moradi, V. Samimi and S. T. Mostafavi, Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Appl. Surface Sci. 256(14) (2010) 4447-4455
  • Kim, J. M. Caruthers and N. A. Peppas, Penetrant transport in cross linked polystyrene. Macromol. 26(8) (1993) 1841-1847
  • L. Vasquez, The Porous Medium Equation Mathematical Theory, Oxford University Press (2006)
  • N. Gorban, H. P. Sargsyan and H. A. Wahab, Quasichemical models of multicomponent nonlinear diffusion. Math. Model. Nat. Phenomena. 6(5) (2011) 184-262. Arxiv: 1012.2908; doi:10.1051/mmnp/ 20116509
  • M. Brown, A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Computer Methods and Programs in Biomedicine 65(3) (2001) 191-200
  • Kumar, B. Singh and B. K. Panigrahi, Framework of Gradient Descent Least Squares Regression-Based NN Structure for Power Quality Improvement in PV-Integrated Low-Voltage Weak Grid System. IEEE Transactions on Industrial Electronics. 66(12) (2019) 9724-33
  • J. Burnham, J. F. MacGregor and R. Viveros, Interpretation of regression coefficients under a latent variable regression model. Journal of Chemometrics: A Journal of the Chemometrics Society 15(4) (2001) 265-84
  • D. Cook, On the interpretation of regression plots. Journal of the American Statistical Association 89(425) (1994) 177-89
  • Bartlett and C. Frost, Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology 31(4) (2008) (2008) 466-75
  • Taylor, Interpretation of the correlation coefficient: a basic review. Journal of Diagnostic Medical Sonography 6(1) (1990) 35-9
  • Syafiuddin, S. Salmiati, J. Jonbi and M.A. Fulazzaky, Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J. Environ. Manage. 218 (2018) 59-70
  • Zheng, S. Zhang, W. Cheng, L. Zhang, P. Meng, T. Zhang et al., Theoretical calculations, molecular dynamics simulations and experimental investigation of the adsorption of cadmium (II) on amidoxime-chelating cellulose. J. Mater. Chem. A 7 (22) (2019) 13714-26
  • E. Enyoh and B. O. Isiuku, Removal of pentachlorophenol (PCP) from aqueous solution using Canna indica L.: Kinetics, isotherm and thermodynamic studies. Arab. J. Chem. Environ. Res. 08 (2) (2021) 193-213
  • Balarak, J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal and V. K. Gupta, The use of low-cost adsorbent (canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies. Colloids Interf. Sci. Commun. 7 (2015) 16-19
  • G. Ji, W. Chen, L. Duan and D. Zhu, Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 43 (2009) 2322-2327
  • Gopal, M. Asaithambi, P. Sivakumar and V. Sivakumar, Continuous fixed bed adsorption studies of Rhodamine-B dye using polymer bound adsorbent. Indian J. Chem. Technol. 23 (2016) 53-58
  • Marquardt, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11 (1963) 431-441
  • Sag and Y. Alkay, Application of equilibrium and mass transfer models to dynamic removal of Cr (VI) ions by chitin in packed column reactor. Process Biochem. 36 (2001) 187-197
  • Shahbeig, N. Bagheri, S. A. Ghorbanian, A. Hallajisani and S. Poorkarimi, A new adsorption isotherm model of aqueous solutions on granular activated carbon. World Journal of Modelling and Simulation 9(4) (2013) 243-54
  • I. King, The alternative Durbin-Watson test: An assessment of Durbin and Watson’s choice of test statistics.  J. Econometrics 17 (1981) 51-66.
  • Simba, A. Yadav and A. B. Pinjari, On the beaviour, mechanistic modelling and interaction of biochar and crop fertilizers in aqueous solutions. Resour. Effic. Technol. 2 (3) (2016) 133-146

Download all article in PDF

WSN 186 (2023) 67-93


 

ADVERTISEMENT
Tags: adsorption capacityadsorption mechanismBatch adsorptionequilibriumkinetic modeling
ShareTweetPin
Next Post

Antifertility effect of Mangifera indica leaf extract on the adrenal-gonadal axis of male albino rat

Spatial Variation in Housing Rents in Calabar Metropolis, Cross River State, Nigeria

View free articles

  • Open access

View Articles

  • 2013 (5)
    • Volume 1 (2013), pp. 1-14 (2)
    • Volume 2 (2013), pp. 1-29 (3)
  • 2014 (13)
    • Volume 3 (2014), pp. 1-21 (3)
    • Volume 4 (2014), pp. 1-16 (2)
    • Volume 5 (2014), pp. 1-36 (4)
    • Volume 6 (2014), pp. 1-23 (3)
  • 2015 (109)
    • Volume 10 (2015), pp. 1-100 (5)
    • Volume 11 (2015), pp. 1-96 (6)
    • Volume 12 (2015), pp. 1-76 (6)
    • Volume 13 (2015), pp. 1-130 (7)
    • Volume 14 (2015), pp. 1-55 (1)
    • Volume 15 (2015), pp. 1-25 (2)
    • Volume 16 (2015), pp. 1-158 (9)
    • Volume 17 (2015), pp. 1-63 (1)
    • Volume 18 (2015), pp. 1-127 (8)
    • Volume 19 (2015), pp. 1-111 (7)
    • Volume 20 (2015), pp. 1-336 (1)
    • Volume 21 (2015), pp. 1-89 (7)
    • Volume 22 (2015), pp. 1-119 (8)
    • Volume 23 (2015), pp. 1-127 (10)
    • Volume 24 (2015), pp. 1-87 (6)
    • Volume 7 (2015), pp. 1-237 (9)
    • Volume 8 (2015), pp. 1-203 (7)
    • Volume 9 (2015), pp. 1-160 (9)
  • 2016 (517)
    • Volume 25 (2016), pp. 1-16 (2)
    • Volume 26 (2016), pp. 1-19 (2)
    • Volume 27 (2016), pp. 1-16 (2)
    • Volume 28 (2016), pp. 1-100 (7)
    • Volume 29 (2016), pp. 1-95 (6)
    • Volume 30 (2016), pp. 1-142 (10)
    • Volume 31 (2016), pp. 1-124 (8)
    • Volume 32 (2016), pp. 1-81 (9)
    • Volume 33 (2016), pp. 1-121 (8)
    • Volume 34 (2016), pp. 1-145 (10)
    • Volume 35 (2016), pp. 1-133 (10)
    • Volume 36 (2016), pp. 1-152 (10)
    • Volume 37 (2016), pp. 1-303 (18)
    • Volume 38 (2016), pp. 1-59 (1)
    • Volume 39 (2016), pp. 1-30 (2)
    • Volume 40 (2016), pp. 1-299 (20)
    • Volume 41 (2016), pp. 1-287 (36)
    • Volume 42 (2016), pp. 1-316 (21)
    • Volume 43(1,2,3) (2016), pp. 1-157 (3)
      • Volume 43, Issue 1 (2016), pp. 1-55 (1)
      • Volume 43, Issue 2 (2016), pp. 56-103 (1)
      • Volume 43, Issue 3 (2016), pp. 104-157 (1)
    • Volume 44 (2016), pp. 1-301 (20)
    • Volume 45(1,2) (2016), pp. 1-383 (21)
      • Volume 45, Issue 1 (2016), pp. 1-62 (1)
      • Volume 45, Issue 2 (2016), pp. 63-383 (20)
    • Volume 46 (2016), pp. 1-286 (20)
    • Volume 47(1,2) (2016), pp. 1-350 (21)
      • Volume 47, Issue 1 (2016), pp. 1-61 (1)
      • Volume 47, Issue 2 (2016), pp. 62-350 (20)
    • Volume 48 (2016), pp. 1-163 (17)
    • Volume 49(1,2) (2016), pp. 1-404 (21)
      • Volume 49, Issue 1 (2016), pp. 1-58 (1)
      • Volume 49, Issue 2 (2016), pp. 59-404 (20)
    • Volume 50 (2016), pp. 1-316 (20)
    • Volume 51 (2016), pp. 1-71 (7)
    • Volume 52 (2016), pp. 1-275 (20)
    • Volume 53(1,2,3) (2016), pp. 1-429 (22)
      • Volume 53, Issue 1 (2016), pp. 1-66 (1)
      • Volume 53, Issue 2 (2016), pp. 67-109 (1)
      • Volume 53, Issue 3 (2016), pp. 110-429 (20)
    • Volume 54 (2016), pp. 1-299 (20)
    • Volume 55 (2016), pp. 1-288 (20)
    • Volume 56 (2015), pp. 1-266 (20)
    • Volume 57 (2016), pp. 1-570 (53)
    • Volume 58 (2016), pp. 1-161 (10)
    • Volume 59 (2016), pp. 1-128 (10)
    • Volume 60 (2016), pp. 1-120 (10)
  • 2017 (481)
    • Volume 61(1,2) (2017), pp. 1-194 (11)
      • Volume 61, Issue 1 (2017), pp. 1-51 (1)
      • Volume 61, Issue 2 (2017), pp. 52-194 (10)
    • Volume 62 (2017), pp. 1-146 (10)
    • Volume 63 (2017), pp. 1-240 (1)
    • Volume 64 (2017), pp. 1-140 (10)
    • Volume 65 (2017), pp. 1-175 (10)
    • Volume 66 (2017), pp. 1-300 (20)
    • Volume 67(1,2,) (2017), pp. 1-389 (21)
      • Volume 67, Issue 1 (2017), pp. 1-67 (1)
      • Volume 67, Issue 2 (2017), pp. 68-389 (20)
    • Volume 68 (2017), pp. 1-141 (1)
    • Volume 69 (2017), pp. 1-253 (20)
    • Volume 70(1,2) (2017), pp. 1-321 (21)
      • Volume 70, Issue 1 (2017), pp. 1-50 (1)
      • Volume 70, Issue 2 (2017), pp. 51-321 (20)
    • Volume 71 (2017), pp. 1-219 (18)
    • Volume 72 (2017), pp. 1-478 (46)
    • Volume 73 (2017), pp. 1-133 (15)
    • Volume 74 (2017), pp. 1-287 (20)
    • Volume 75 (2017), pp. 1-111 (12)
    • Volume 76 (2017), pp. 1-199 (20)
    • Volume 77(1,2) (2017), pp. 1-380 (21)
      • Volume 77, Issue 1 (2017), pp. 1-102 (1)
      • Volume 77, Issue 2 (2017), pp. 103-380 (20)
    • Volume 78 (2017), pp. 1-230 (24)
    • Volume 79 (2017), pp. 1-89 (1)
    • Volume 80 (2017), pp. 1-323 (20)
    • Volume 81(1,2) (2017), pp. 1-312 (21)
      • Volume 81, Issue 1 (2017), pp. 1-47 (1)
      • Volume 81, Issue 2 (2017), pp. 48-312 (20)
    • Volume 82 (2017), pp. 1-90 (1)
    • Volume 83 (2017), pp. 1-239 (20)
    • Volume 84 (2017), pp. 1-92 (1)
    • Volume 85 (2017), pp. 1-73 (10)
    • Volume 86(1,2,3) (2017), pp. 1-370 (22)
      • Volume 86, Issue 1 (2017), pp. 1-58 (1)
      • Volume 86, Issue 2 (2017), pp. 59-122 (1)
      • Volume 86, Issue 3 (2017), pp. 123-370 (20)
    • Volume 87 (2017), pp. 1-255 (20)
    • Volume 88(1,2) (2017), pp. 1-226 (11)
      • Volume 88, Issue 1 (2017), pp. 1-57 (1)
      • Volume 88, Issue 2 (2017), pp. 58-226 (10)
    • Volume 89 (2017), pp. 1-321 (33)
    • Volume 90 (2017), pp. 1-270 (20)
  • 2018 (486)
    • Volume 100 (2018), pp. 1-253 (20)
    • Volume 101 (2018), pp. 1-252 (20)
    • Volume 102 (2018), pp. 1-223 (20)
    • Volume 103 (2018), pp. 1-249 (18)
    • Volume 104 (2018), pp. 1-492 (40)
    • Volume 105 (2018), pp. 1-232 (20)
    • Volume 106 (2018), pp. 1-244 (20)
    • Volume 107 (2018), pp. 1-232 (20)
    • Volume 108 (2018), pp. 1-244 (20)
    • Volume 109 (2018), pp. 1-266 (19)
    • Volume 110 (2018), pp. 1-243 (20)
    • Volume 111 (2018), pp. 1-181 (17)
    • Volume 112 (2018), pp. 1-251 (20)
    • Volume 113 (2018), pp. 1-250 (26)
    • Volume 114 (2018), pp. 1-264 (20)
    • Volume 91 (2018), pp. 1-137 (10)
    • Volume 92(1,2) (2018), pp. 1-399 (21)
      • Volume 92, Issue 1 (2018), pp. 1-138 (1)
      • Volume 92, Issue 2 (2018), pp. 139-399 (20)
    • Volume 93 (2018), pp. 1-141 (15)
    • Volume 94(1,2) (2018), pp. 1-332 (21)
      • Volume 94, Issue 1 (2018), pp. 1-71 (1)
      • Volume 94, Issue 2 (2018), pp. 72-332 (20)
    • Volume 95 (2018), pp. 1-272 (20)
    • Volume 96 (2018), pp. 1-250 (20)
    • Volume 97 (2018), pp. 1-284 (20)
    • Volume 98 (2018), pp. 1-232 (20)
    • Volume 99 (2018), pp. 1-229 (19)
  • 2019 (467)
    • Volume 115 (2019), pp. 1-268 (20)
    • Volume 116 (2019), pp. 1-252 (19)
    • Volume 117 (2019), pp. 1-242 (20)
    • Volume 118 (2019), pp. 1-280 (20)
    • Volume 119 (2019), pp. 1-253 (20)
    • Volume 120(1,2) (2019), pp. 1-295 (21)
      • Volume 120, Issue 1 (2019), pp. 1-59 (1)
      • Volume 120, Issue 2 (2019), pp. 60-295 (20)
    • Volume 121 (2019), pp. 1-100 (13)
    • Volume 122 (2019), pp. 1-262 (20)
    • Volume 123 (2019), pp. 1-273 (20)
    • Volume 124(1,2) (2019), pp. 1-333 (21)
      • Volume 124, Issue 1 (2019), pp. 1-85 (1)
      • Volume 124, Issue 2 (2019), pp. 86-1-333 (20)
    • Volume 125 (2019), pp. 1-259 (20)
    • Volume 126 (2019), pp. 1-298 (20)
    • Volume 127(1,2,3) (2019), pp. 1-376 (22)
      • Volume 127, Issue 1 (2019), pp. 1-55 (1)
      • Volume 127, Issue 2 (2019), pp. 56-105 (1)
      • Volume 127, Issue 3 (2019), pp. 106-376 (20)
    • Volume 128(1,2) (2019), pp. 1-432 (21)
      • Volume 128, Issue 1 (2019), pp. 1-70 (1)
      • Volume 128, Issue 2 (2019), pp. 71-432 (20)
    • Volume 129 (2019), pp. 1-267 (20)
    • Volume 130 (2019), pp. 1-308 (20)
    • Volume 131 (2019), pp. 1-288 (20)
    • Volume 132 (2019), pp. 1-312 (24)
    • Volume 133 (2019), pp. 1-274 (20)
    • Volume 134(1,2) (2020), pp. 1-338 (21)
      • Volume 134, Issue 1 (2019), pp. 1-51 (1)
      • Volume 134, Issue 2 (2019), pp. 52-338 (20)
    • Volume 135 (2019), pp. 1-298 (22)
    • Volume 136 (2019), pp. 1-246 (16)
    • Volume 137 (2019), pp. 1-236 (14)
    • Volume 138(1,2) (2019), pp. 1-294 (13)
      • Volume 138, Issue 1 (2019), pp. 1-64 (1)
      • Volume 138, Issue 2 (2019), pp. 65-294 (12)
  • 2020 (179)
    • Volume 139(1,2) (2020), pp. 1-258 (13)
      • Volume 139, Issue 1 (2020), pp. 1-60 (1)
      • Volume 139, Issue 2 (2020), pp. 61-258 (12)
    • Volume 140 (2020), pp. 1-184 (10)
    • Volume 141 (2020), pp. 1-155 (10)
    • Volume 142 (2020), pp. 1-194 (12)
    • Volume 143 (2020), pp. 1-261 (16)
    • Volume 144 (2020), pp. 1-449 (30)
    • Volume 145 (2020), pp. 1-408 (30)
    • Volume 146 (2020), pp. 1-289 (18)
    • Volume 147 (2020), pp. 1-208 (12)
    • Volume 148 (2020), pp. 1-121 (8)
    • Volume 149 (2020), pp. 1-165 (10)
    • Volume 150 (2020), pp. 1-181 (10)
  • 2021 (143)
    • Volume 151 (2021), pp. 1-122 (8)
    • Volume 152 (2021), pp. 1-125 (8)
    • Volume 153(1,2) (2021), pp. 1-215 (13)
      • Volume 153, Issue 1 (2021), pp. 1-42 (1)
      • Volume 153, Issue 2 (2021), pp. 43-215 (12)
    • Volume 154 (2021), pp. 1-174 (10)
    • Volume 155 (2021), pp. 1-154 (10)
    • Volume 156 (2021), pp. 1-191 (12)
    • Volume 157 (2021), pp. 1-188 (10)
    • Volume 158 (2021), pp. 1-298 (16)
    • Volume 159 (2021), pp. 1-223 (14)
    • Volume 160 (2021), pp. 1-337 (20)
    • Volume 161 (2021), pp. 1-156 (10)
    • Volume 162 (2021), pp. 1-178 (12)
  • 2022 (125)
    • Volume 163 (2022), pp. 1-157 (8)
    • Volume 164 (2022), pp. 1-149 (8)
    • Volume 165 (2022), pp. 1-209 (12)
    • Volume 166 (2022), pp. 1-145 (10)
    • Volume 167 (2022), pp. 1-161 (9)
    • Volume 168 (2022), pp. 1-146 (10)
    • Volume 169 (2022), pp. 1-201 (10)
    • Volume 170 (2022), pp. 1-171 (10)
    • Volume 171 (2022), pp. 1-125 (8)
    • Volume 172 (2022), pp. 1-333 (20)
    • Volume 173 (2022), pp. 1-161 (10)
    • Volume 174 (2022), pp. 1-176 (10)
  • 2023 (132)
    • Volume 175 (2023), pp. 1-108 (8)
    • Volume 176 (2023), pp. 1-174 (10)
    • Volume 177 (2023), pp. 1-136 (8)
    • Volume 178 (2023), pp. 1-165 (10)
    • Volume 179 (2023), pp. 1-164 (10)
    • Volume 180 (2023), pp. 1-162 (12)
    • Volume 181 (2023), pp. 1-215 (12)
    • Volume 182 (2023), pp. 1-265 (18)
    • Volume 183 (2023), pp. 1-226 (14)
    • Volume 184 (2023), pp. 1-154 (10)
    • Volume 185 (2023), pp. 1-191 (10)
    • Volume 186 (2023), pp. 1-160 (10)
  • 2024 (183)
    • Volume 187 (2024), pp. 1-156 (10)
    • Volume 188 (2024), pp. 1-197 (12)
    • Volume 189 (2024), pp. 1-310 (20)
    • Volume 190(1,2) (2024), pp. 1-351 (18)
      • Volume 190, Issue 1 (2024), pp. 1-69 (1)
      • Volume 190, Issue 2 (2024), pp. 70-351 (17)
    • Volume 191 (2024), pp. 1-207 (12)
    • Volume 192 (2024), pp. 1-319 (20)
    • Volume 193(1,2) (2024), pp. 1-252 (13)
      • Volume 193, Issue 1 (2024), pp. 1-45 (1)
      • Volume 193, Issue 2 (2024), pp. 46-252 (12)
    • Volume 194 (2024), pp. 1-213 (13)
    • Volume 195 (2024), pp. 1-235 (13)
    • Volume 196 (2024), pp. 1-221 (14)
    • Volume 197 (2024), pp. 1-231 (15)
    • Volume 198 (2024), pp. 1-402 (23)
  • 2025 (169)
    • Volume 199 (2025), pp. 1-253 (16)
    • Volume 200 (2025), pp. 1-223 (14)
    • Volume 201 (2025), pp. 1-245 (12)
    • Volume 202 (2025), pp. 1-317 (17)
    • Volume 203 (2025), pp. 1-438 (15)
    • Volume 204 (2025), pp. 1-353 (19)
    • Volume 205 (2025), pp. 1-272 (16)
    • Volume 206 (2025), pp. 1-172 (13)
    • Volume 207 (2025), pp. 1-173 (12)
    • Volume 208 (2025), pp. 1-174 (11)
    • Volume 209 (2025), pp. 1-184 (12)
    • Volume 210 (2025), pp. 1-158 (12)
  • 2026 (21)
    • Volume 211 (2026), pp. (21)
  • Info (6)
  • News (3)
  • Open access (460)
  • Premium (38)

Last Articles

  • All
  • Premium
  • Open access

A practical model of growing and rotating black hole like universe

2024-01-04

Predicting of Academic Performance by Identity Styles and Self-efficacy Beliefs (Personal and Collective) in Iranian High School Students

2024-02-01

Hidden Connections Between NanoTesla Magnetic Fields, Cosic Molecular Resonance, and Photonic Fields Within Living Systems

2024-01-25

Popular Articles

  • About Us

    About Us

    0 shares
    Share 0 Tweet 0
  • Submit your Article

    0 shares
    Share 0 Tweet 0
  • Jeevamrut – A Natural Fertilizer

    0 shares
    Share 0 Tweet 0
  • Abstracting & Indexing

    0 shares
    Share 0 Tweet 0
  • Guide for Authors

    0 shares
    Share 0 Tweet 0

Careers

  • All
  • Careers
No Content Available
World Scientific News

World Scientific News (WSN) is an open-access fully peer-reviewed scholarly journal. The monthly – interdisciplinary journal is directed in the first place to scientists who want to publish their findings, insights, observations, conclusions, etc.

READ MORE

Menu

  • Home
  • About Us
  • Editorial Board
  • Guide for Authors
  • Instruction for Authors
  • Abstracting & Indexing
  • Submit your Article
  • Careers
  • News

Other databases

AGRO
CAS
Google Scholar
Google Scholar Metrics
ICZN
ProQuest
Road Directory
ZooBank

EISSN 2392-2192

Login / Register
Privacy Policy
Cookie Policy

made by fixfix

No Result
View All Result
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News

made by fixfix

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.