ABSTRACT
This paper employs GIS to describe and assess the risk of forest fires in Ondo State, Nigeria. The study took a holistic approach to the major contributing factors to forest fire hazard, which included landcover, elevation, slope, aspect, distance to road, and distance to settlement. The study used GIS-AHP as a tool to carry out the proneness of Ondo state Nigeria to forest fire hazard taking into account various factors, which would help people in the area to be aware of places that are more prone to forest fire ahead of safety. Remote sensing and ArcGIS have been demonstrated to be one of the most effective methods of studying a region’s susceptibility to forest fire hazards on a regional scale. As the primary means of achieving the study’s goal, remote sensing data were collected and combined with other thematic maps of the study area. The study reveals that due to the close proximity of road and settlement, the pattern of landcover, and the high level of anthropogenic activity occurrence in the region, parts of Idanre local government area, Owo local government area, and Ose local government area were found to be highly prone to forest fire. Overall, the findings of this study indicate that the GIS-AHP-based category model is effective in identifying forest fire hazard areas in Ondo state.
References
- Dudley, N., & Phillips, A. (2006). Forests and Protected Areas: Guidance on the use of the IUCN protected area management categories (Vol. 12). Gland, Switzerland: IUCN.
- Rawat, U. S., & Agarwal, N. K. (2015). Biodiversity: Concept, threats and conservation. Environment Conservation Journal, 16(3), 19-28
- Kuter, N., Yenilmez, F., & Kuter, S. (2011). Forest fire risk mapping by kernel density estimation. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 32(2), 599-610
- Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21st century. Mitigation and Adaptation Strategies for Global Change, 11(4), 847-859
- Flannigan, M. D., Stocks, B. J., & Wotton, B. M. (2000). Climate change and forest fires. Science of the Total Environment, 262(3), 221-229
- Brown, A. G., Tooth, S., Bullard, J. E., Thomas, D. S., Chiverrell, R. C., Plater, A. J., … & Aalto, R. (2017). The geomorphology of the Anthropocene: emergence, status and implications. Earth Surface Processes and Landforms, 42(1), 71-90
- Leone, V., Lovreglio, R., Martín, M. P., Martínez, J., & Vilar, L. (2009). Human factors of fire occurrence in the Mediterranean. In Earth observation of wildland fires in Mediterranean ecosystems (pp. 149-170). Springer, Berlin, Heidelberg.
- Mohd, S. (2010). Managing Natural Disasters – Hydrological, Marine and Geological Disasters, Macmillan Publishers India Ltd., India, p. 466-468
- Laurance, W. F., Useche, D. C., Rendeiro, J., Kalka, M., Bradshaw, C. J. A., Sloan, S. P., Zamzani, F. (2012). Averting biodiversity collapse in tropical forest protected areas. Nature 489: 290–294
- Aref, I. M., El Atta, H. A., & Mohamed AL Ghamde, A. R. (2011). Effect of forest fires on tree diversity and some soil properties. International Journal of Agriculture & Biology, 13(5), 659-664
- Maithani, G. P., Bahuguna, V. K., & Pyare, L. (1986). Effect of forest fires on the ground vegetation of a moist deciduous sal (Shorea robusta) forest. Indian Forester, 112(8), 646-678.
- Doerr, S. H., Blake, W. H., Shakesby, R. A., Stagnitti, F., Vuurens, S. H., Humphreys, G. S., & Wallbrink, P. (2004). Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire, 13(2), 157-163
- Knicker, H. (2007). How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry, 85(1), 91-118
- Alcañiz, M., Outeiro, L., Francos, M., & Úbeda, X. (2018). Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613, 944-957.
- Mataix-Solera, J., Guerrero, C., García-Orenes, F., Bárcenas, G. M., & Torres, M. P. (2009). Forest fire effects on soil microbiology. In Fire effects on Soils and Restoration Strategies (pp. 149-192). CRC Press.
- Keywood, M., Kanakidou, M., Stohl, A., Dentener, F., Grassi, G., Meyer, C. P., … & Burrows, J. (2013). Fire in the air: Biomass burning impacts in a changing climate. Critical Reviews in Environmental Science and Technology, 43(1), 40-83.
- Uyigue, E., & Agho, M. (2007). Coping with climate change and environmental degradation in the Niger Delta of southern Nigeria. Community Research and Development Centre Nigeria (CREDC), 1(30).
- Effiom Essien Oku. Cross River State, Nigeria: A Global Visual Cultural and Forest biodiversity Tourism Destination. The Institute of Biopaleogeography named under Charles R. Darwin 13 (2022) 1-101
- Kaufman, Y.J., Justice, C.O., Flynn, L.P., Kendall, J.D., Prins, E.M., Giglio, L., Ward, D.E., Menzel, W.P., & Setzer, A.W. (1998). Potential global fire monitoring from EOS-MODIS. J Geophys Res. 103(D24): 32215–32238
- Giglio, L., Csiszar, I., & Justice, C. O. (2006). Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Journal of Geophysical Research: Biogeosciences, 111(G2). 447-450
- Roy, D.P., Lewis, P.E. & Justice, C.O. (2002). Burned area mapping using multi-temporal moderate spatial resolution data–a bi-directional reflectance model-based expectation approach. Remote Sens Environ. 83(1-2): 263–286
- Abedi, G.H., Feizizadeh, B. & T. Blaschke. (2020). GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. J Environ Plann Manage 63(3): 481–419
- Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A review on early forest fire detection systems using optical remote sensing. Sensors, 20(22), 6442
- Philip, S. (2007, March). Active fire detection using remote sensing based polar-orbiting and geostationary observations: an approach towards near real-time fire monitoring. International Institute for Geo-Information Science and Earth Observation (ITC).
- Hua, L., & Shao, G. (2017). The progress of operational forest fire monitoring with infrared remote sensing. Journal of Forestry Research, 28(2), 215-229
- Jain, A., S. A. Ravan, R. K. Singh, K. K. Das & P.S. Roy. (1996). Forest fire risk modeling using remote sensing and GIS. Current Science 70: 928-933
- Mamman, A. B., J. O. Oyebanji, and S. W. Petters, Eds., (2000) Nigeria: A People United, a Future Assured, Vol. 2, Survey of States, Federal Ministry of Information, 543 pp.
- González, J. R., Palahí, M., Pukkala, T. and Trasobares, A. (2007). Modelling the risk of forest fires in Catalonia (North-East Spain) for forest management planning purposes. Wildfire 2007.
- Jung, J., Kim, C., Jayakumar, S., Kim, S., Han, S., Kim, D. H., & Heo, J. (2013). Forest fire risk mapping of Kolli Hills, India, considering subjectivity and inconsistency issues. Natural Hazards, 65(3), 2129-2146
- Sharma, L. K., Kanga, S., Nathawat, M. S., Sinha, S., & Pandey, P. C. (2012). Fuzzy AHP for forest fire risk modeling. Disaster Prevention and Management: An International Journal. 21(2): 160-171
- Vadrevu, K. P., Eaturu, A., & Badarinath, K. (2010). Fire risk evaluation using multicriteria analysis—a case study. Environmental Monitoring and Assessment, 166(1), 223-239
- Saxena, A., & Srivastava, P. (2007, May). Integrating biophysical characters, microclimate and human factors in forest fire risk modeling. In Proceedings of 4th International Wildland Fire Conference, Seville, Spain ( 13-17).
- Hernandez-Leal, P. A., Arbelo, M., & Gonzalez-Calvo, A. (2006). Fire risk assessment using satellite data. Advances in Space Research, 37(4), 741-746
- Mansor, S., Shariah, M. A., Billa, L., Setiawan, I., & Jabar, F. (2004). Spatial technology for natural risk management. Disaster Prevention and Management: An International Journal. 13(5), 364-373
- Yin, H. W., Kong, F. H., & Li, X. Z. (2004). RS and GIS-based forest fire risk zone mapping in da hinggan mountains. Chinese Geographical Science, 14(3), 251-257
- Jaiswal, R.K., Mukherjee, S. and Raju, D.K. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4, 1–10
- Kasthuri Thilagam, V., & Sivasamy, R. (2013). Role of remote sensing and GIS in land resource inventory-a review. Agricultural Reviews, 34(3), 295-300
- Liaghat, S., & Balasundram, S. K. (2010). A review: The role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50-55
- Hick, P.T., Prata, A.J., Spencer, G. and Campbell, N. (1986). NOAA-AVHRR satellite data evaluations for areal extent of bushfire damage in Western Australia. In: Proc Ist Aust AVHRR Conf, Perth, Western Australia, 22-24, Oct 1986.
- Cunningham, A.A. and Martell, D.L. (1976). The use of subjective probability assessments to predict forest fire occurrence. Canadian Journal of Forest Research, 6, 348-356
- Chuvieco, E. and Congalton, R.G. (1989). Application of remote sensing and geographic information system to forest fire hazard mapping. Remote Sens. Environ. 29, 147-159
- Vega-Garcıa, C., Woodard, T., Adamowicz W. L. and Lee, B. (1995). A logit model for predicting the daily occurrence of human caused forest fires. International Journal of Wildland Fire, 5, 101–111
- Deeming, J. E., Burgan, R. L. and Cohen, J. D. (1978). The National Fire Danger Rating System, US Department of Agriculture, Forest Service, Ogden.
- Salvador, R., Valeriano, J., Pons, X. and Diaz-Delgado, R., (2000). A semi-automatic methodology to detect fire scars in shrubs and evergreen forest with Landsat MSS time series. International Journal of Remote Sensing, 21, 655–671
- Cuomo, V., Lasaponara, R. and Tramutoli, V. (2001). Evaluation of a newsatellite based method for forest fire detection. International Journal of Remote Sensing, 22 (9), 1799-1826
- Kuntz, S. and Karteris, M. (1995). Fire Risk Modelling Based on Satellite Remote Sensing and GIS. EARSel Advances in Remote Sensing, 3(4), 39-46
- Wybo, J.L., Guarni, F. and Richard, B. (1995). Forest fire danger assessment methods and decision support. Safety Science, 20, 61-70
- Roy, P.S., Ranganath, B.K., Diwakar, P.G., Vohra, T.P.S., Bhan, S.K., Singh, I.J. and Pandhan, V.C.(1991). Tropical forest type mapping and monitoring using remote sensing. International Journal of Remote Sensing 12 (11), 2205–2228
- Chuvieco, E., Sales J., 1996. Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Systems, 10(3), pp. 333-345
- Kanga, S., Sharma, L., Pandey, P.C., Nathawat, M.S. and Sharma, S.K. (2011). Geospatial Approach for Forest Fire Risk Modeling: a Case Study of Taradevi Range of Shimla Forest Division in Himachal Pradesh, India. Indian Forester, 137(3), 296-303
- Chakrabarti, P. (2014). Literature Review Written in Partial Fulfillment of RA693: Wildland Fire Risk Zone Mapping. Papers in Resource Analysis, 16, 7.
- Verma, A.K., Singh, D., Sharma, S.D. and Khanduri, K. (2013). Forest Fire Risk Zonation in Raipur Range, Mussoorie Forest Division using: GIS and Remote Sensing Technology. International Journal of Advanced Scientific and Technical Research, 6(3), 141-150
- Thakur, A.K. and Singh, D. (2014). Forest Fire Risk Zonation Using Geospatial Techniques and Analytic Hierarchy Process in Dehradun District, Uttarakhand, India. Universal Journal of Environmental Research and Technology, 2(4), 82-89
- Jo, M.; Bo Lee, M.; Young Lee, S.; Jo, Y.; Ryul Baek. S.( 2000) The development of forest fire forecasting system using internet GIS and satellite remote sensing. In: Asian Conference On Remote Sensing, 2000. Available in : Access in: 13 october. 2015.
- Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176
- Khaira, A., & Dwivedi, R. K. (2018). A state of the art review of analytical hierarchy process. Materials Today: Proceedings, 5(2), 4029-4035
- Triantaphyllou, E., & Mann, S. H. (1995). Using the analytic hierarchy process for decision making in engineering applications: some challenges. International Journal of Industrial Engineering: Applications and Practice, 2(1), 35-44
- Arnold, R. K., & Buck, C. C. (1954). Blow-Up Fires—Silviculture or Weather Problems? Journal of Forestry, 52(6), 408-411
- Setiawan, I., Mahmud, A. R., Mansor, S., Shariff, A. M., & Nuruddin, A. A. (2004). GIS‐grid‐based and multi‐criteria analysis for identifying and mapping peat swamp forest fire hazard in Pahang, Malaysia. Disaster Prevention and Management: An International Journal. 13(5), 379-386
- Chang, H. W., Tien, Y. M., & Juang, C. H. (1996). Formation of south-facing bald mudstone slopes in southwestern Taiwan. Engineering Geology, 42(1), 37-49
- Sharma, N. R., Fernandes, P. J. F., & Pokharel, J. R. (2015). Methodological development for forest fire hazard mapping in Nepal Community. International Issue, s66(7), 1551-1566
- Sivrikaya, N. U. R. İ., Saglam, B., Akay, A., & Bozali, N. (2014). Evaluation of forest fire risk with GIS. Polish Journal of Environmental Studies, 23, 187-194
- Orabi Ahmed M. Elbasher, Abdalla Khyar Abdalla, Ahmed Eltayb Abdalla, Hisham Mousa Mohammed, Verification of Climate Change Using Rainfall and Temperature Data as Indicators in the Arid Zone of the Sudan 1981 to 2010. World News of Natural Sciences 47 (2023) 61-83
- Orabi Ahmed M. Elbasher, Abdalla Khyar Abdalla, Ahmed Eltayb Abdalla, Hisham Mousa Mohammed, Impacts of Rainfall and Temperature on Sorghum (Sorghum biocolor) and Millet (Pennisetum glaucum) Yield in Arid Zone of the Sudan 1981-2010. World News of Natural Sciences 45 (2022) 37-57
- Haruna Onu Samuel, Osisanya Olajuwon Wasiu, Agbalagba Oghenenyerhovwo Ezekiel, Korode Akinjide Isaac, Ibitoye Taiwo Abel, Application of aeromagnetic in determination of lineament of Hawal basement complex Northeast Nigeria. World News of Natural Sciences 45 (2022) 58-92
- Star Otitie Umayah, Moses Oghenenyoreme Eyankware, Aquifer evaluation in southern parts of Nigeria from geo‑electrical derived parameters. World News of Natural Sciences 42 (2022) 28-43
Download all article in PDF



