World Scientific News
EISSN 2392-2192
  • Login
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
SUBMIT ARTICLE
Register
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
World Scientific News
No Result
View All Result
Home 2024

A multi-criteria approach for evaluating the Use of AI for Matching Patients to Optimal Mental Health Treatment Plans

Authors: Yewande Ojo, Vivian Davids, Olawale Oni, Martha Odoemene, Patricia Idowu-Collin, Ufuoma Eyeregba, 193(2) (2024) 201-222

2024-05-09
Reading Time: 7 mins read
0

ABSTRACT

This study presents a novel approach to assessing different artificial intelligence alternatives for planning mental health treatments. Using a fuzzy TOPSIS-based method, six AI alternatives, including rule-based systems, logistic regression, neural networks, evolutionary algorithms, hybrid models, and benchmark algorithms were evaluated. The assessment was based on several criteria: privacy protection, treatment effectiveness, explainability, healthcare costs, regulatory compliance, and ethical implications. Rule-based systems and benchmark algorithms emerged as the most preferred techniques. The study underscores the importance of considering various criteria and viewpoints from stakeholders when creating AI-driven decision-support systems for mental health treatment. The main areas of future research should be the development of ethical and explainable AI, validation studies, integrating AI with emerging technologies, and encouraging stakeholder involvement. The results of this study provide a foundation for informed decision-making and guide further investigation and advancement in this domain, with the aim of revolutionizing the provision of mental health services and improving patient outcomes.

 

References

  • B. D. Collaborators and others, Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018 Nov 10; 392 (10159): 1789-1858
  • Patel et al., “The Lancet Commission on global mental health and sustainable development,” The lancet, vol. 392, no. 10157, pp. 1553–1598, 2018.
  • World Health Organization(WHO), “Mental Health.” Accessed: Mar. 01, 2024. [Online]. Available: https://www.who.int/health-topics/mental-health#tab=tab_1
  • H. Andrade et al., “Barriers to mental health treatment: results from the WHO World Mental Health surveys,” Psychol Med, vol. 44, no. 6, pp. 1303–1317, 2014.
  • Henderson, S. Evans-Lacko, and G. Thornicroft, “Mental illness stigma, help seeking, and public health programs,” Am J Public Health, vol. 103, no. 5, pp. 777–780, 2013.
  • R. Singla, B. A. Kohrt, L. K. Murray, A. Anand, B. F. Chorpita, and V. Patel, “Psychological treatments for the world: lessons from low-and middle-income countries,” Annu Rev Clin Psychol, vol. 13, pp. 149–181, 2017.
  • P. Denwigwe, R. D. Uche, P. N. Asuquo, and M. W. Ngbar, “Cyber-trolling, cyber-impersonation, and social adjustment among secondary school students in Calabar Education Zone, Cross River State, Nigeria,” British Journal of Education, vol. 7, no. 10, pp. 44–52, Oct. 2019.
  • Thornicroft et al., “Evidence for effective interventions to reduce mental-health-related stigma and discrimination,” The Lancet, vol. 387, no. 10023, pp. 1123–1132, 2016.
  • C. Fortney et al., “A tipping point for measurement-based care,” Psychiatric services, vol. 68, no. 2, pp. 179–188, 2017.
  • P. Denwigwe and G. Okoli, “Cultural competence for improved technology and economic development in Nigeria: counselling implications,” Education for Today, vol. 14, no. 1, pp. 55–63, 2018.
  • Garg, N. L. Williams, A. Ip, and A. P. Dicker, “Clinical integration of digital solutions in health care: an overview of the current landscape of digital technologies in cancer care,” JCO Clin Cancer Inform, vol. 2, pp. 1–9, 2018.
  • Graham et al., “Artificial intelligence for mental health and mental illnesses: an overview,” Curr Psychiatry Rep, vol. 21, pp. 1–18, 2019.
  • B. R. Shatte, D. M. Hutchinson, and S. J. Teague, “Machine learning in mental health: a scoping review of methods and applications,” Psychol Med, vol. 49, no. 9, pp. 1426–1448, 2019.
  • Torous et al., “The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality,” World Psychiatry, vol. 20, no. 3, pp. 318–335, 2021.
  • Thieme, D. Belgrave, and G. Doherty, “Machine learning in mental health: A systematic review of the HCI literature to support the development of effective and implementable ML systems,” ACM Transactions on Computer-Human Interaction (TOCHI), vol. 27, no. 5, pp. 1–53, 2020.
  • C. Mohr, K. R. Weingardt, M. Reddy, and S. M. Schueller, “Three problems with current digital mental health research… and three things we can do about them,” Psychiatric services, vol. 68, no. 5, pp. 427–429, 2017.
  • Baltussen et al., “Multicriteria decision analysis to support health technology assessment agencies: benefits, limitations, and the way forward,” Value in Health, vol. 22, no. 11, pp. 1283–1288, 2019.
  • Thokala et al., “Multiple criteria decision analysis for health care decision making—an introduction: report 1 of the ISPOR MCDA Emerging Good Practices Task Force,” Value in health, vol. 19, no. 1, pp. 1–13, 2016.
  • Ashok, R. Madan, A. Joha, and U. Sivarajah, “Ethical framework for Artificial Intelligence and Digital technologies,” Int J Inf Manage, vol. 62, p. 102433, 2022.
  • A. Naslund et al., “Digital technology for treating and preventing mental disorders in low-income and middle-income countries: a narrative review of the literature,” Lancet Psychiatry, vol. 4, no. 6, pp. 486–500, 2017.
  • D. Luxton, “Artificial intelligence in psychological practice: Current and future applications and implications.,” Prof Psychol Res Pr, vol. 45, no. 5, p. 332, 2014.
  • Patil and H. Shankar, “Transforming healthcare: harnessing the power of AI in the modern era,” International Journal of Multidisciplinary Sciences and Arts, vol. 2, no. 1, pp. 60–70, 2023.
  • Martinez-Martin, “Minding the AI: Ethical challenges and practice for AI mental health care tools,” in Artificial Intelligence in Brain and Mental Health: Philosophical, Ethical \& Policy Issues, Springer, 2022, pp. 111–125.
  • Lecomte et al., “Mobile apps for mental health issues: meta-review of meta-analyses,” JMIR Mhealth Uhealth, vol. 8, no. 5, p. e17458, 2020.
  • Torous and A. Haim, “Dichotomies in the development and implementation of digital mental health tools,” Psychiatric Services, vol. 69, no. 12, pp. 1204–1206, 2018.
  • M. Kilbourne, M. S. Neumann, H. A. Pincus, M. S. Bauer, and R. Stall, “Implementing evidence-based interventions in health care: Application of the replicating effective programs framework,” Implementation Science, vol. 2, no. 1, pp. 1–10, Dec. 2007, doi: 10.1186/1748-5908-2-42/TABLES/2.
  • P. Denwigwe and R. D. Uche, “Parenting styles and self-esteem of secondary school students in the Federal Capital Territory, Abuja, Nigeria,” European Journal of Social sciences, vol. 59, no. 4, pp. 441–448, 2020.
  • P. Denwigwe, M. O. Eke, and M. E. Ngwu, “Media reporting, public enlightenment campaigns and suicidal tendencies among Oshodi Youths, Lagos State, Nigeria: Counselling implications,” Global Journal of Educational Research, vol. 21, no. 1, 2022, doi: 10.4314/gjedr.v21i1.2.
  • S. Fernandes, L. M. Williams, J. Steiner, M. Leboyer, A. F. Carvalho, and M. Berk, The new field of ‘precision psychiatry, BMC Med, vol. 15, no. 1, pp. 1–7, Apr. 2017, doi: 10.1186/S12916-017-0849-X/FIGURES/1.
  • P. Denwigwe, “Assertiveness Training and Value Re-orientation as preventive Counselling Strategies for Youth Restiveness in Nigeria.,” Journal of Teacher Perspective, vol. 9, no. 1, pp. 238–248, 2015.
  • D. Goodheart et al., “Evidence-based practice in psychology,” American Psychologist, vol. 61, no. 4, pp. 271–285, May 2006, doi: 10.1037/0003-066X.61.4.271.
  • Scott and C. C. Lewis, “Using Measurement-Based Care to Enhance Any Treatment,” Cogn Behav Pract, vol. 22, no. 1, pp. 49–59, Feb. 2015, doi: 10.1016/J.CBPRA.2014.01.010.
  • P. Denwigwe and E. G. Akpama, “Sex Differences in Academic Self–Esteem of Secondary School Students in Abuja Metropolis of Nigeria,” Journal of Education and Practice, vol. 4, no. 13, pp. 22–26, Jun. 2013.
  • Jensen-Doss et al., “Monitoring Treatment Progress and Providing Feedback is Viewed Favorably but Rarely Used in Practice,” Administration and Policy in Mental Health and Mental Health Services Research, vol. 45, no. 1, pp. 48–61, Jan. 2018, doi: 10.1007/S10488-016-0763-0/METRICS.
  • D. Ribeiro, X. Huang, K. R. Fox, and J. C. Franklin, “Depression and hopelessness as risk factors for suicide ideation, attempts and death: meta-analysis of longitudinal studies,” The British Journal of Psychiatry, vol. 212, no. 5, pp. 279–286, May 2018, doi: 10.1192/BJP.2018.27.
  • Guo, H. Yang, Z. Liu, Y. Xu, and B. Hu, “Deep Neural Networks for Depression Recognition Based on 2D and 3D Facial Expressions Under Emotional Stimulus Tasks,” Front Neurosci, vol. 15, p. 609760, Apr. 2021, doi: 10.3389/FNINS.2021.609760/BIBTEX.
  • M. Corcoran et al., “Prediction of psychosis across protocols and risk cohorts using automated language analysis,” World Psychiatry, vol. 17, no. 1, pp. 67–75, Feb. 2018, doi: 10.1002/WPS.20491.
  • Bagherzadeh, M. S. Shahabi, and A. Shalbaf, “Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal,” Comput Biol Med, vol. 146, p. 105570, Jul. 2022, doi: 10.1016/J.COMPBIOMED.2022.105570.
  • Qu, C. Sas, C. D. Roquet, and G. Doherty, “Functionality of Top-Rated Mobile Apps for Depression: Systematic Search and Evaluation,” JMIR Ment Health 2020; 7(1):e15321
  • Chakraborty, R. D. Raut, T. M. Rofin, and S. Chakraborty, “A comprehensive and systematic review of multi-criteria decision-making methods and applications in healthcare,” Healthcare Analytics, vol. 4, p. 100232, Dec. 2023, doi: 10.1016/J.HEALTH.2023.100232.
  • Leplège et al., “A new condition specific quality of life measure for the blind and the partially sighted in sub-Saharan Africa, the IOTAQOL: Methodological aspects of the development procedure,” Quality of Life Research, vol. 15, no. 8, pp. 1373–1382, Nov. 2006, doi: 10.1007/S11136-006-0023-Y/METRICS.
  • Franx, L. Dixon, M. Wensing, and H. Pincus, “Implementation strategies for collaborative primary care-mental health models,” Curr Opin Psychiatry, vol. 26, no. 5, pp. 502–510, Sep. 2013, doi: 10.1097/YCO.0B013E328363A69F.
  • P.A, D. C. P, A. P.N, A. C, and U. F.U, “Awareness and Utilization of e-Learning Resources by Trainee Counsellors of Counselling Education in Calabar, Nigeria,” International Journal of Educational Technology and Learning, vol. 3, no. 2, 2018, doi: 10.20448/2003.32.45.51
  • Cearns, T. Hahn, and B. T. Baune, “Recommendations and future directions for supervised machine learning in psychiatry,” Translational Psychiatry 2019 9:1, vol. 9, no. 1, pp. 1–12, Oct. 2019, doi: 10.1038/s41398-019-0607-2.
  • Bhugra et al., “The WPA-Lancet Psychiatry Commission on the Future of Psychiatry,” Lancet Psychiatry, vol. 4, no. 10, pp. 775–818, Oct. 2017, doi: 10.1016/S2215-0366(17)30333-4.
  • P. Denwigwe and M. E. Ngwu, “Personal variables and attitude of youths to Lassa fever preventive practices in Bwari area Council Abuja, Nigeria: Counselling implications,” Global Journal of Educational Research , vol. 21, no. 1, 2019, doi: https://dx.doi.org/10.4314/gjedr.v21i1.3.
  • J. Zhou, G. Y. Hu, C. H. Hu, C. L. Wen, and L. L. Chang, “A Survey of Belief Rule-Base Expert System,” IEEE Trans Syst Man Cybern Syst, vol. 51, no. 8, pp. 4944–4958, Aug. 2021, doi: 10.1109/TSMC.2019.2944893.
  • Lee et al., “Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review,” J Affect Disord, vol. 241, pp. 519–532, Dec. 2018, doi: 10.1016/J.JAD.2018.08.073.
  • W. Gong, N. N. Qin, and X. Y. Sun, “Evolutionary algorithms for multi-objective optimization problems with interval parameters,” Proceedings 2010 IEEE 5th International Conference on Bio-Inspired Computing: Theories and Applications, BIC-TA 2010, pp. 411–420, 2010, doi: 10.1109/BICTA.2010.5645160.
  • X. Tran et al., “The Current Research Landscape on the Artificial Intelligence Application in the Management of Depressive Disorders: A Bibliometric Analysis,” Int J Environ Res Public Health, vol. 16, no. 12, p. 2150, Jun. 2019, doi: 10.3390/IJERPH16122150.
  • Chen and P. Esmaeilzadeh, “Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges,” J Med Internet Res 2024;26:e53008 https://www.jmir.org/2024/1/e53008, vol. 26, no. 1, p. e53008, Mar. 2024, doi: 10.2196/53008.
  • Esmaeilzadeh, T. Mirzaei, and S. Dharanikota, “Patients’ Perceptions Toward Human–Artificial Intelligence Interaction in Health Care: Experimental Study,” J Med Internet Res 2021; 23(11): e25856. doi: 10.2196/25856.
  • Amann et al., “To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems,” PLOS Digital Health, vol. 1, no. 2, p. e0000016, Feb. 2022, doi: 10.1371/JOURNAL.PDIG.0000016.
  • Naik et al., “Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility?,” Front Surg, vol. 9, p. 862322, 2022, doi: 10.3389/FSURG.2022.862322.
  • Ojetunde, D. Emezirinwune, M. Emezirinwune, C. Denwigwe, and R. Eyiaro, “Integrating Environmental, Social, and Governance Criteria in Corporate Auditing: A Multiple Criteria Decision Making”. World Scientific News 191 (2024) 102-126
  • Tjoa and C. Guan, “A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI,” IEEE Trans Neural Netw Learn Syst, vol. 32, no. 11, pp. 4793–4813, Jul. 2019, doi: 10.1109/TNNLS.2020.3027314.
  • Hee Lee and S. N. Yoon, “Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges,” International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 271, doi: 10.3390/IJERPH18010271

Download all article in PDF

WSN 193(2) (2024) 201-222


 

ADVERTISEMENT
Tags: Artificial IntelligenceExplainable AIFuzzy-TOPSISMental Health TreatmentMulti-criteria decision-makingStakeholder Involvement
ShareTweetPin
Next Post

Light speed rotating and halting Planck-Hubble-Hawking universe

Antimicrobial effects and phytochemical analysis of Psidium gujava leaf extract against Pseudomonas aeruginosa

View free articles

  • Open access

View Articles

  • 2013 (5)
    • Volume 1 (2013), pp. 1-14 (2)
    • Volume 2 (2013), pp. 1-29 (3)
  • 2014 (13)
    • Volume 3 (2014), pp. 1-21 (3)
    • Volume 4 (2014), pp. 1-16 (2)
    • Volume 5 (2014), pp. 1-36 (4)
    • Volume 6 (2014), pp. 1-23 (3)
  • 2015 (109)
    • Volume 10 (2015), pp. 1-100 (5)
    • Volume 11 (2015), pp. 1-96 (6)
    • Volume 12 (2015), pp. 1-76 (6)
    • Volume 13 (2015), pp. 1-130 (7)
    • Volume 14 (2015), pp. 1-55 (1)
    • Volume 15 (2015), pp. 1-25 (2)
    • Volume 16 (2015), pp. 1-158 (9)
    • Volume 17 (2015), pp. 1-63 (1)
    • Volume 18 (2015), pp. 1-127 (8)
    • Volume 19 (2015), pp. 1-111 (7)
    • Volume 20 (2015), pp. 1-336 (1)
    • Volume 21 (2015), pp. 1-89 (7)
    • Volume 22 (2015), pp. 1-119 (8)
    • Volume 23 (2015), pp. 1-127 (10)
    • Volume 24 (2015), pp. 1-87 (6)
    • Volume 7 (2015), pp. 1-237 (9)
    • Volume 8 (2015), pp. 1-203 (7)
    • Volume 9 (2015), pp. 1-160 (9)
  • 2016 (517)
    • Volume 25 (2016), pp. 1-16 (2)
    • Volume 26 (2016), pp. 1-19 (2)
    • Volume 27 (2016), pp. 1-16 (2)
    • Volume 28 (2016), pp. 1-100 (7)
    • Volume 29 (2016), pp. 1-95 (6)
    • Volume 30 (2016), pp. 1-142 (10)
    • Volume 31 (2016), pp. 1-124 (8)
    • Volume 32 (2016), pp. 1-81 (9)
    • Volume 33 (2016), pp. 1-121 (8)
    • Volume 34 (2016), pp. 1-145 (10)
    • Volume 35 (2016), pp. 1-133 (10)
    • Volume 36 (2016), pp. 1-152 (10)
    • Volume 37 (2016), pp. 1-303 (18)
    • Volume 38 (2016), pp. 1-59 (1)
    • Volume 39 (2016), pp. 1-30 (2)
    • Volume 40 (2016), pp. 1-299 (20)
    • Volume 41 (2016), pp. 1-287 (36)
    • Volume 42 (2016), pp. 1-316 (21)
    • Volume 43(1,2,3) (2016), pp. 1-157 (3)
      • Volume 43, Issue 1 (2016), pp. 1-55 (1)
      • Volume 43, Issue 2 (2016), pp. 56-103 (1)
      • Volume 43, Issue 3 (2016), pp. 104-157 (1)
    • Volume 44 (2016), pp. 1-301 (20)
    • Volume 45(1,2) (2016), pp. 1-383 (21)
      • Volume 45, Issue 1 (2016), pp. 1-62 (1)
      • Volume 45, Issue 2 (2016), pp. 63-383 (20)
    • Volume 46 (2016), pp. 1-286 (20)
    • Volume 47(1,2) (2016), pp. 1-350 (21)
      • Volume 47, Issue 1 (2016), pp. 1-61 (1)
      • Volume 47, Issue 2 (2016), pp. 62-350 (20)
    • Volume 48 (2016), pp. 1-163 (17)
    • Volume 49(1,2) (2016), pp. 1-404 (21)
      • Volume 49, Issue 1 (2016), pp. 1-58 (1)
      • Volume 49, Issue 2 (2016), pp. 59-404 (20)
    • Volume 50 (2016), pp. 1-316 (20)
    • Volume 51 (2016), pp. 1-71 (7)
    • Volume 52 (2016), pp. 1-275 (20)
    • Volume 53(1,2,3) (2016), pp. 1-429 (22)
      • Volume 53, Issue 1 (2016), pp. 1-66 (1)
      • Volume 53, Issue 2 (2016), pp. 67-109 (1)
      • Volume 53, Issue 3 (2016), pp. 110-429 (20)
    • Volume 54 (2016), pp. 1-299 (20)
    • Volume 55 (2016), pp. 1-288 (20)
    • Volume 56 (2015), pp. 1-266 (20)
    • Volume 57 (2016), pp. 1-570 (53)
    • Volume 58 (2016), pp. 1-161 (10)
    • Volume 59 (2016), pp. 1-128 (10)
    • Volume 60 (2016), pp. 1-120 (10)
  • 2017 (481)
    • Volume 61(1,2) (2017), pp. 1-194 (11)
      • Volume 61, Issue 1 (2017), pp. 1-51 (1)
      • Volume 61, Issue 2 (2017), pp. 52-194 (10)
    • Volume 62 (2017), pp. 1-146 (10)
    • Volume 63 (2017), pp. 1-240 (1)
    • Volume 64 (2017), pp. 1-140 (10)
    • Volume 65 (2017), pp. 1-175 (10)
    • Volume 66 (2017), pp. 1-300 (20)
    • Volume 67(1,2,) (2017), pp. 1-389 (21)
      • Volume 67, Issue 1 (2017), pp. 1-67 (1)
      • Volume 67, Issue 2 (2017), pp. 68-389 (20)
    • Volume 68 (2017), pp. 1-141 (1)
    • Volume 69 (2017), pp. 1-253 (20)
    • Volume 70(1,2) (2017), pp. 1-321 (21)
      • Volume 70, Issue 1 (2017), pp. 1-50 (1)
      • Volume 70, Issue 2 (2017), pp. 51-321 (20)
    • Volume 71 (2017), pp. 1-219 (18)
    • Volume 72 (2017), pp. 1-478 (46)
    • Volume 73 (2017), pp. 1-133 (15)
    • Volume 74 (2017), pp. 1-287 (20)
    • Volume 75 (2017), pp. 1-111 (12)
    • Volume 76 (2017), pp. 1-199 (20)
    • Volume 77(1,2) (2017), pp. 1-380 (21)
      • Volume 77, Issue 1 (2017), pp. 1-102 (1)
      • Volume 77, Issue 2 (2017), pp. 103-380 (20)
    • Volume 78 (2017), pp. 1-230 (24)
    • Volume 79 (2017), pp. 1-89 (1)
    • Volume 80 (2017), pp. 1-323 (20)
    • Volume 81(1,2) (2017), pp. 1-312 (21)
      • Volume 81, Issue 1 (2017), pp. 1-47 (1)
      • Volume 81, Issue 2 (2017), pp. 48-312 (20)
    • Volume 82 (2017), pp. 1-90 (1)
    • Volume 83 (2017), pp. 1-239 (20)
    • Volume 84 (2017), pp. 1-92 (1)
    • Volume 85 (2017), pp. 1-73 (10)
    • Volume 86(1,2,3) (2017), pp. 1-370 (22)
      • Volume 86, Issue 1 (2017), pp. 1-58 (1)
      • Volume 86, Issue 2 (2017), pp. 59-122 (1)
      • Volume 86, Issue 3 (2017), pp. 123-370 (20)
    • Volume 87 (2017), pp. 1-255 (20)
    • Volume 88(1,2) (2017), pp. 1-226 (11)
      • Volume 88, Issue 1 (2017), pp. 1-57 (1)
      • Volume 88, Issue 2 (2017), pp. 58-226 (10)
    • Volume 89 (2017), pp. 1-321 (33)
    • Volume 90 (2017), pp. 1-270 (20)
  • 2018 (486)
    • Volume 100 (2018), pp. 1-253 (20)
    • Volume 101 (2018), pp. 1-252 (20)
    • Volume 102 (2018), pp. 1-223 (20)
    • Volume 103 (2018), pp. 1-249 (18)
    • Volume 104 (2018), pp. 1-492 (40)
    • Volume 105 (2018), pp. 1-232 (20)
    • Volume 106 (2018), pp. 1-244 (20)
    • Volume 107 (2018), pp. 1-232 (20)
    • Volume 108 (2018), pp. 1-244 (20)
    • Volume 109 (2018), pp. 1-266 (19)
    • Volume 110 (2018), pp. 1-243 (20)
    • Volume 111 (2018), pp. 1-181 (17)
    • Volume 112 (2018), pp. 1-251 (20)
    • Volume 113 (2018), pp. 1-250 (26)
    • Volume 114 (2018), pp. 1-264 (20)
    • Volume 91 (2018), pp. 1-137 (10)
    • Volume 92(1,2) (2018), pp. 1-399 (21)
      • Volume 92, Issue 1 (2018), pp. 1-138 (1)
      • Volume 92, Issue 2 (2018), pp. 139-399 (20)
    • Volume 93 (2018), pp. 1-141 (15)
    • Volume 94(1,2) (2018), pp. 1-332 (21)
      • Volume 94, Issue 1 (2018), pp. 1-71 (1)
      • Volume 94, Issue 2 (2018), pp. 72-332 (20)
    • Volume 95 (2018), pp. 1-272 (20)
    • Volume 96 (2018), pp. 1-250 (20)
    • Volume 97 (2018), pp. 1-284 (20)
    • Volume 98 (2018), pp. 1-232 (20)
    • Volume 99 (2018), pp. 1-229 (19)
  • 2019 (467)
    • Volume 115 (2019), pp. 1-268 (20)
    • Volume 116 (2019), pp. 1-252 (19)
    • Volume 117 (2019), pp. 1-242 (20)
    • Volume 118 (2019), pp. 1-280 (20)
    • Volume 119 (2019), pp. 1-253 (20)
    • Volume 120(1,2) (2019), pp. 1-295 (21)
      • Volume 120, Issue 1 (2019), pp. 1-59 (1)
      • Volume 120, Issue 2 (2019), pp. 60-295 (20)
    • Volume 121 (2019), pp. 1-100 (13)
    • Volume 122 (2019), pp. 1-262 (20)
    • Volume 123 (2019), pp. 1-273 (20)
    • Volume 124(1,2) (2019), pp. 1-333 (21)
      • Volume 124, Issue 1 (2019), pp. 1-85 (1)
      • Volume 124, Issue 2 (2019), pp. 86-1-333 (20)
    • Volume 125 (2019), pp. 1-259 (20)
    • Volume 126 (2019), pp. 1-298 (20)
    • Volume 127(1,2,3) (2019), pp. 1-376 (22)
      • Volume 127, Issue 1 (2019), pp. 1-55 (1)
      • Volume 127, Issue 2 (2019), pp. 56-105 (1)
      • Volume 127, Issue 3 (2019), pp. 106-376 (20)
    • Volume 128(1,2) (2019), pp. 1-432 (21)
      • Volume 128, Issue 1 (2019), pp. 1-70 (1)
      • Volume 128, Issue 2 (2019), pp. 71-432 (20)
    • Volume 129 (2019), pp. 1-267 (20)
    • Volume 130 (2019), pp. 1-308 (20)
    • Volume 131 (2019), pp. 1-288 (20)
    • Volume 132 (2019), pp. 1-312 (24)
    • Volume 133 (2019), pp. 1-274 (20)
    • Volume 134(1,2) (2020), pp. 1-338 (21)
      • Volume 134, Issue 1 (2019), pp. 1-51 (1)
      • Volume 134, Issue 2 (2019), pp. 52-338 (20)
    • Volume 135 (2019), pp. 1-298 (22)
    • Volume 136 (2019), pp. 1-246 (16)
    • Volume 137 (2019), pp. 1-236 (14)
    • Volume 138(1,2) (2019), pp. 1-294 (13)
      • Volume 138, Issue 1 (2019), pp. 1-64 (1)
      • Volume 138, Issue 2 (2019), pp. 65-294 (12)
  • 2020 (179)
    • Volume 139(1,2) (2020), pp. 1-258 (13)
      • Volume 139, Issue 1 (2020), pp. 1-60 (1)
      • Volume 139, Issue 2 (2020), pp. 61-258 (12)
    • Volume 140 (2020), pp. 1-184 (10)
    • Volume 141 (2020), pp. 1-155 (10)
    • Volume 142 (2020), pp. 1-194 (12)
    • Volume 143 (2020), pp. 1-261 (16)
    • Volume 144 (2020), pp. 1-449 (30)
    • Volume 145 (2020), pp. 1-408 (30)
    • Volume 146 (2020), pp. 1-289 (18)
    • Volume 147 (2020), pp. 1-208 (12)
    • Volume 148 (2020), pp. 1-121 (8)
    • Volume 149 (2020), pp. 1-165 (10)
    • Volume 150 (2020), pp. 1-181 (10)
  • 2021 (143)
    • Volume 151 (2021), pp. 1-122 (8)
    • Volume 152 (2021), pp. 1-125 (8)
    • Volume 153(1,2) (2021), pp. 1-215 (13)
      • Volume 153, Issue 1 (2021), pp. 1-42 (1)
      • Volume 153, Issue 2 (2021), pp. 43-215 (12)
    • Volume 154 (2021), pp. 1-174 (10)
    • Volume 155 (2021), pp. 1-154 (10)
    • Volume 156 (2021), pp. 1-191 (12)
    • Volume 157 (2021), pp. 1-188 (10)
    • Volume 158 (2021), pp. 1-298 (16)
    • Volume 159 (2021), pp. 1-223 (14)
    • Volume 160 (2021), pp. 1-337 (20)
    • Volume 161 (2021), pp. 1-156 (10)
    • Volume 162 (2021), pp. 1-178 (12)
  • 2022 (125)
    • Volume 163 (2022), pp. 1-157 (8)
    • Volume 164 (2022), pp. 1-149 (8)
    • Volume 165 (2022), pp. 1-209 (12)
    • Volume 166 (2022), pp. 1-145 (10)
    • Volume 167 (2022), pp. 1-161 (9)
    • Volume 168 (2022), pp. 1-146 (10)
    • Volume 169 (2022), pp. 1-201 (10)
    • Volume 170 (2022), pp. 1-171 (10)
    • Volume 171 (2022), pp. 1-125 (8)
    • Volume 172 (2022), pp. 1-333 (20)
    • Volume 173 (2022), pp. 1-161 (10)
    • Volume 174 (2022), pp. 1-176 (10)
  • 2023 (132)
    • Volume 175 (2023), pp. 1-108 (8)
    • Volume 176 (2023), pp. 1-174 (10)
    • Volume 177 (2023), pp. 1-136 (8)
    • Volume 178 (2023), pp. 1-165 (10)
    • Volume 179 (2023), pp. 1-164 (10)
    • Volume 180 (2023), pp. 1-162 (12)
    • Volume 181 (2023), pp. 1-215 (12)
    • Volume 182 (2023), pp. 1-265 (18)
    • Volume 183 (2023), pp. 1-226 (14)
    • Volume 184 (2023), pp. 1-154 (10)
    • Volume 185 (2023), pp. 1-191 (10)
    • Volume 186 (2023), pp. 1-160 (10)
  • 2024 (183)
    • Volume 187 (2024), pp. 1-156 (10)
    • Volume 188 (2024), pp. 1-197 (12)
    • Volume 189 (2024), pp. 1-310 (20)
    • Volume 190(1,2) (2024), pp. 1-351 (18)
      • Volume 190, Issue 1 (2024), pp. 1-69 (1)
      • Volume 190, Issue 2 (2024), pp. 70-351 (17)
    • Volume 191 (2024), pp. 1-207 (12)
    • Volume 192 (2024), pp. 1-319 (20)
    • Volume 193(1,2) (2024), pp. 1-252 (13)
      • Volume 193, Issue 1 (2024), pp. 1-45 (1)
      • Volume 193, Issue 2 (2024), pp. 46-252 (12)
    • Volume 194 (2024), pp. 1-213 (13)
    • Volume 195 (2024), pp. 1-235 (13)
    • Volume 196 (2024), pp. 1-221 (14)
    • Volume 197 (2024), pp. 1-231 (15)
    • Volume 198 (2024), pp. 1-402 (23)
  • 2025 (169)
    • Volume 199 (2025), pp. 1-253 (16)
    • Volume 200 (2025), pp. 1-223 (14)
    • Volume 201 (2025), pp. 1-245 (12)
    • Volume 202 (2025), pp. 1-317 (17)
    • Volume 203 (2025), pp. 1-438 (15)
    • Volume 204 (2025), pp. 1-353 (19)
    • Volume 205 (2025), pp. 1-272 (16)
    • Volume 206 (2025), pp. 1-172 (13)
    • Volume 207 (2025), pp. 1-173 (12)
    • Volume 208 (2025), pp. 1-174 (11)
    • Volume 209 (2025), pp. 1-184 (12)
    • Volume 210 (2025), pp. 1-158 (12)
  • 2026 (38)
    • Volume 211 (2026), pp. 1-348 (21)
    • Volume 212 (2026), pp. (17)
  • Info (6)
  • News (3)
  • Open access (477)
  • Premium (39)

Last Articles

  • All
  • Premium
  • Open access

Application of Nano-Copper – Substituted Lead Zirconate as Surface Catalyst for Oxidative Degradation of Organic Dye

2024-01-04

XPS Analysis of nanolayers obtained on AISI 316L SS after Magnetoelectropolishing

2024-01-07

A Multiple Regression Model to Predict Mortality Among Patients Affected During Covid-19 in Some Developing Countries By

2025-03-06

Popular Articles

  • About Us

    About Us

    0 shares
    Share 0 Tweet 0
  • Submit your Article

    0 shares
    Share 0 Tweet 0
  • Jeevamrut – A Natural Fertilizer

    0 shares
    Share 0 Tweet 0
  • Abstracting & Indexing

    0 shares
    Share 0 Tweet 0
  • Guide for Authors

    0 shares
    Share 0 Tweet 0

Careers

  • All
  • Careers
No Content Available
World Scientific News

World Scientific News (WSN) is an open-access fully peer-reviewed scholarly journal. The monthly – interdisciplinary journal is directed in the first place to scientists who want to publish their findings, insights, observations, conclusions, etc.

READ MORE

Menu

  • Home
  • About Us
  • Editorial Board
  • Guide for Authors
  • Instruction for Authors
  • Abstracting & Indexing
  • Submit your Article
  • Careers
  • News

Other databases

Crossref

CAS
Google Scholar
Google Scholar Metrics
ICZN
ProQuest
Road Directory
ZooBank

AGRO

 

EISSN 2392-2192

Login / Register
Privacy Policy
Cookie Policy

made by fixfix

No Result
View All Result
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News

made by fixfix

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.