ABSTRACT
This paper, besides the basics of fuzzy equivalence and fuzzy tolerance relations, primarily aims at describing methods for vector representation of equivalence classes of an α-partition and tolerance classes of an α-cover. In addition, a method for the derivation of fuzzy partitions and fuzzy covers from a given vector structure is outlined. Finally, certain monoids of α-partitions and α-covers are introduced.
References
- Bělohlávek, R., and Funioková, T., Similarity and Fuzzy Tolerance Spaces, Logic Computat., Oxford Univ. Press, 14(6) (2004) 1-29
- Biswas, N.N., Maximum Compatibility Classes from Compatibility Matrices, Sadhana, 14 (1989) 213-218
- Chajda, I., Algebraic theory of tolerance relations, Palacký Univ., Press, Olomouck, 1991.
- Chakraborty,, On State Minimization of Very Large Incompletely Specified Sequential Machines, BE Project Report, Dept. of Electrical Communication Eng., Indian Inst. Sci., 1987.
- Chakraborty, M.K., and Das, M., On fuzzy equivalence 1, Fuzzy Sets Syst. 11 (1983) 185-193
- Cross, V.V., and Sudkamp, T.A., Similarity and Compatibility in Fuzzy Set Theory: Assessment and Applications, Physica – Verlag, 2002.
- Das, M., Chakraborty, M.K., and Ghoshal, T.K., Fuzzy Tolerance Relations, Fuzzy Tolerance Space, and Basis, Fuzzy Sets Syst. 97(1998) 361-369
- Demirci, M., and Recasens, J., Fuzzy Groups, Fuzzy Functions, and Fuzzy Equivalence Relations, Fuzzy Sets Syst. 144 (2004) 441-458
- Dubois, D. and Prade, H., Comment on [15]. J. Syst. Sci. 9(3) (1978) 357-360
- Dubois, D. and Prade, H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, 1980.
- Ginsburg, S., On the Reduction of Superfluous States in a Sequential Machine, Assoc. Comp. Mach. 6 (1959) 259-262
- Gupta, K.C., and Gupta, R.K., Fuzzy equivalence relation redefined, Fuzzy Sets Syst. 79 (1996) 227-233
- Grasselli, A., A Note on the Derivation of Maximum Compatibility Classes, Calco, 3 (1966) 165-176
- Grasselli, A. and Luccio, F., A Method for Minimizing the number of internal states in Incompletely Specified Sequential Networks. IEEE Trans. on Electronic Computers, 14 (1965) 350-359.
- Jain, R., Tolerance Analysis Using Fuzzy Sets, J. Syst. Sci. 7(12) (1976) 1393-1401
- Kauffman, A., Introduction to the Theory of Fuzzy Subsets, Academic Press NY., 1975.
- Klir, G., and Folger, T., Fuzzy Sets, Uncertainty, and Information, Prentice-Hall, 1988.
- Klir, G., and Yuan, B., Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, 1995.
- Kurepa, D.J., On Reflexive Symmetric Relations and Graphs, Razprave Dissertationes, Slovenska Akademia in Umetosti, (1952-1953) 1-28
- Lee, K.H., First Course on Fuzzy Theory and Applications, Springer, 2005.
- Lipovski, G.J., An Improved Method of Finding all Largest Compatible Classes, Coordinated Science Laboratory, Univ. of Illinois, Urbana, Report. R. 362, 1967.
- Marcus, M.P., Derivation of Maximum Compatibles using Boolean Algebra, IBM J. Res. Develop. 8 (1964) 537-538
- Marcus, S., Tolerance Multisets, In Multiset Processing: Mathematical, Computer Science and Molecular Computing Points of View, C.S. Claude et al. (Eds.), LNCS 2235, Springer, (2001), 217-223.
- McCluskey, E.J., Minimum State Sequential Circuits for the Restricted Class of Incompletely Specified Flow Tables, Bell System Technical J. 41 (1962) 1759-1768
- Murali, V., Fuzzy equivalence relations, Fuzzy Sets Syst. 30 (1989) 155-163
- Nemitz, W.C., Fuzzy Relations and Fuzzy Functions, Fuzzy Sets Syst. 19(1986) 1177-1191.
- Ovchinnikov, S.V., Similarity relations, fuzzy partitions, and fuzzy orderings, Fuzzy Sets Syst. 40 (1991) 107-126
- Paull, U.M., and Unger, S.H., Minimizing the number of States in Incompletely Specified Sequential Switching functions. IRE Trans. on Electronic Computers, 8 (1959) 356-367
- Pognowski, J., Tolerance Space with Applications in Linguistics. Poznań Press, Poznań, 1981.
- Potoczny, H.B., On Similarity Relations in Fuzzy Relational Databases, Fuzzy Sets Syst. 12 (1984) 231-235
- Recasens, J., Fifty years of similarity relations: a survey of foundations and applications, J. Gen Syst. 51(2) (2022) 126-184
- Ross, T.J., Fuzzy Logic with Engineering Applications (3rd Edition), Springer, 2010.
- Rundesnsteiner, E.A., Hawkes, L.W., and Bandler, W., On Nearness Measures in Fuzzy Relational Data Models, J. Approx. Reasonings, 3 (1989) 267-298
- Schreider, J.A., Equality, Resemblance, and Order, English Translation, Mir Publishers, Moscow, 1971.
- Singh, D. and William-west, T.O., Compatibility Relation and its Application to Network Segmentation and Decentralization, Proceedings (ICASTA 2013), Atlantic Press, 3 (2013) 114-119.
- Thiele, H., On the minimal definability of fuzzy tolerance coverings, 25th Intn. Symp. Multiple-Valued Logic (ISVL’ 95), IEEE (1995) 140-145
- Tremblay, J.P., and Manohar, R., Discrete Mathematical Structures with Applications to Computer Science, McGraw- Hill, 1975.
- William, C.W.M., On the Minimal Set of Compatibles for Closure, Microw. Research (1962) 1-46.
- Yeh, R.T., Toward an Algebraic Theory of Fuzzy Relational Systems, Int. Cong. Cyber. (1973) 205-223.
- Zadeh, L.A., Fuzzy Sets, Control. 8(1965) 338-353
- Zadeh, L.A., Similarity Relations and Fuzzy Orderings, Inform. Sci. 3 (1971) 177-200.
- Zvieli, A., On Complete Fuzzy Relational Query Languages, Proc. NAFIPS’ 86, (1986) 704-726
- Chakraborty, M.K., and Das, M., On fuzzy equivalence 2. Fuzzy Sets Syst. 11 (1983) 299-307
Download all article in PDF