ABSTRACT
By considering our 4G model of final unification and its three unified assumptions associated with 3 large atomic gravitational constants, electroweak fermion of rest energy 584.725 GeV and basic nuclear elementary charge of 2.9464e, we have developed many applications starting from subnuclear physics to atomic physics. In this paper, by considering the large numbers of 4G model, we try to infer that, mass ratio of electron to electron neutrino is equal to 5th power of proton-electron mass ratio. Similarly, mass ratio of proton to electron neutrino is equal to 6th power of proton-electron mass ratio. Thus, inferred rest energy of electron neutrino is 2.45 × 10-11 eV. Rest mass of electron neutrino seems to play a crucial role in fitting neutron life time and strong coupling constant. Proceeding further, squared mass ratio of electron and electron neutrino is equal to the ratio of electroweak and Newtonian gravitational constants.
References
- Salam A, Sivaram C. Strong gravity approach to QCD and confinement. Modern Physics Letters A 8(4), 321, 1993
- Onofrio, R. On weak interactions as short-distance manifestations of gravity. Modern Physics Letters A. 28, 7, 1350022, 2013
- Seshavatharam U.V.S and Lakshminarayana S. Final unification with Schwarzschild’s Interaction. Journal of Applied Physical Science International 3(1): 12-22, 2015
- Seshavatharam, U. V. S, Lakshminarayana S. Understanding the Basics of Final Unification With Three Gravitational Constants Associated With Nuclear, Electromagnetic and Gravitational Interactions. Nucl. Phy. Mat. Sci. Rad. A. 4, 355-373, 2017
- Seshavatharam, U.V.S, Lakshminarayana S. Role of Four Gravitational Constants in Nuclear Structure. Mapana-Journal of Sciences 18, 1,21, 2019.
- Seshavatharam, U.V.S, Lakshminarayana S. To Validate the Role of Electromagnetic and Strong Gravitational Constants via the Strong Elementary Charge. Universal Journal of Physics and Application 9(5): 216-225, 2015
- Seshavatharam U. V. S, Gunavardhana Naidu T, Lakshminarayana S. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2451, 020003-1–020003-6, 2022.
- Seshavatharam U.V.S, Lakshminarayana S. EPR argument and mystery of the reduced Planck’s constant. Algebras, Groups, and Geometries 36(4), 801-822, 2020
- Seshavatharam U.V.S, Lakshminarayana S. 4G model of final unification – A brief report. Journal of Physics: Conference Series 2197, 012029, 2022
- Seshavatharam U.V.S and Lakshminarayana S. Is reduced Planck’s constant – an outcome of electroweak gravity? Mapana Journal of Sciences 19, 1, 1, 2020
- Mukhi, S. String theory: a perspective over the last 25 years. Classical and Quantum Gravity 28, 15, 153001, 2011
- Seshavatharam U.V.S and Lakshminarayana S. On the Compactification and Reformation of String Theory with Three Large Atomic Gravitational Constants. International Journal of Physical Research, 9(1), 42-48, 2021
- L. Workman et al. (Particle Data Group). Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update
- Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. Mod. Phys. 93, 025010, 2021
- Seshavatharam U. V. S and Lakshminarayana S. Understanding the Origins of Quark charges, Quantum of Magnetic Flux, Planck’s radiation constant and celestial magnetic moments with 4G model of nuclear charge. Preprints 2023, 2023102015. https://doi.org/10.20944/preprints202310.2015.v1
- Seshavatharam U.V.S, Lakshminarayana S. H. K. Cherop and K.M. Khanna. Three Unified Nuclear Binding Energy Formulae. World Scientific News, 163, 30-77, 2022
- Seshavatharam U.V.S, Lakshminarayana S. On the Role of Nuclear Binding Energy in Understanding Cold Nuclear Fusion. Mapana Journal of Sciences, 20(3), 29-42, 2021
- Seshavatharam U.V.S, Lakshminarayana, S. IGEC Transactions. To Develop an Eco-friendly Cold Nuclear Thermal Power Plant by Considering Iron-56 as A Fuel. Proceedings of the 15th International Green Energy Conference (IGEC-XV). Springer Nature Switzerland, 2024.
- Seshavatharam U. V. S and Lakshminarayana S. Understanding condensed matter physics with refined strong and electroweak mass formula. (Preprint). V, Satya Seshavatharam and S, Lakshminarayana, Understanding Condensed Matter Physics With Refined Strong and Electroweak Mass Formula (October 31, 2023). Available at SSRN: https://ssrn.com/abstract=4617769 or http://dx.doi.org/10.2139/ssrn.4617769
- S. Green. Nuclear Physics. McGraw Hill Book Co. 1955
- Seshavatharam U.V.S and Lakshminarayana. Understanding nuclear stability range with 4G model of nuclear charge. World Scientific News 177, 118-136, 2023.
- Gao Z. P, Wang YJ, Lü HL et al., Machine learning the nuclear mass. Sci. Tech. 32, 109, 2021.
- Tuncay Bayram, Serkan Akkoyun, S. Okan Kara, Alper Sinan. New Parameters for Nuclear Charge Radius Formulas. Acta Phys. Polon. B 44, 8, 1791-1799, 2013
- Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: An update. Atomic Data and Nuclear Data Tables, 99(1), 69-95, 2013
- Seshavatharam U.V.S, Lakshminarayana S. Super symmetry in strong and weak interactions. International Journal of Modern Physics E. 19, 2, 263, 2010
- Seshavatharam U.V.S, Lakshminarayana S. Integral charge SUSY in Strong nuclear gravity. Proceedings of the DAE Symp. on Nucl. Phys. 56, 842, 2011
- Seshavatharam U. V. S and Lakshminarayana S. 4G Model of Fractional Charge Strong-Weak Super Symmetry. International Astronomy and Astrophysics Research Journal, 2(1), 31-55, 2020
- C. Slater. Atomic Radii in Crystals. The Journal of Chemical Physics 41 (10): 3199–3204, 1964
- Bondi. van der Waals Volumes and Radii. The Journal of Physical Chemistry. 68 (3): 441–451, 1964
- Clementi, D.L. Raimondi, W.P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. The Journal of Chemical Physics. 47 (4): 1300–1307, 1967
- Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G. Consistent van der Waals Radii for the Whole Main Group. The Journal of Physical Chemistry A. American Chemical Society (ACS). 113 (19): 5806–5812, 2009
- Martin Rahm, Roald Hoffmann, N. W. Ashcroft. Atomic and Ionic Radii of Elements. 1–96. Chemistry (Weinheim an der Bergstrasse, Germany), 22(41): 14625-14632, 2016
- Yadav, P., Tandon, H., Malik, B. et al. A quest for the universal atomic radii. Struct. Chem. 33, 389–394.2022
- Seshavatharam U.V.S and Lakshminarayana S. A very brief review on strong and electroweak mass formula pertaining to 4G model of final unification. 67th DAE Symposium on Nuclear Physics, Dec’2023, Electroweak Interaction in Nuclei, F11, p. 1173-1174
- Cht Mavrodiev S, Deliyergiyev MA. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula. J. Mod. Phys. E 27: 1850015, 2018
- Azuma et al. Improved measurement results for the Avogadro constant using a 28Si-enriched crystal. Metrologia, 52, 360-375, 2015
- Farschad Torabi, Pouria Ahmadi, Chapter 2 – Fundamentals of batteries, Editor(s): Farschad Torabi, Pouria Ahmadi, Simulation of Battery Systems, Academic Press, Pages 55-81, 2020
- Kenneth Barbalace. Periodic Table of Elements. EnvironmentalChemistry.com. 1995 – 2024. (Complied references there in)
- Schlamminger et al. Measurement of the Gravitational Constant at NIST. American Physical Society meeting, Minneapolis, April 15, 2023
- Abe et al. (KamLAND-Zen Collaboration). Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen. Phys. Rev. Lett. 130, 051801, 2023
- Augier et al. (CUPID-Mo Collaboration). New measurement of double beta decays of 100Mo to excited states of 100Ru with the CUPID-Mo experiment Rev. C 107, 025503, 2023.
- https://www.noelprize.org/uploads/2018/06/popular-physicsprize2015.pdf
- Jyotsna Singh and M. Ibrahim Mirza – Theoretical and Experimental Challenges in the Measurement of Neutrino Mass. Advances in High Energy Physics. 2023, Article ID 8897375, 2023
- Anirban, A. Precise measurement of neutron lifetime. Rev. Phys. 4, 9, 2022.
- Zhang, J., Zhang, S., Zhang, ZR. et al. MFV approach to robust estimate of neutron lifetime. ur. J. C 82, 1106, 2022
- UCNτ Collaboration, F. M. Gonzalez, E. M. Fries, C. Cude-Woods, T. Bailey, M. Blatnik, L. J. Broussard, N. B. Callahan, J. H. Choi, S. M. Clayton, and others, Improved Neutron Lifetime Measurement with UCN τ. Rev. Lett. 127, 162501, 2021
- P. Serebrov, E. A. Kolomensky, A. K. Fomin, I. A. Krasnoshchekova, A. V. Vassiljev, D. M. Prudnikov, I. V. Shoka, A. V. Chechkin, M. E. Chaikovskiy, V. E. Varlamov, S. N. Ivanov, A. N. Pirozhkov, P. Geltenbort, O. Zimmer, T. Jenke, M. Van der Grinten, and M. Tucker Phys. Neutron lifetime measurements with a large gravitational trap for ultracold neutrons. Phys. Rev. C 97, 055503, 2018.
- Seshavatharam, U.V.S; Lakshminarayana, S. Understanding Atomic Mass Unit, Avogadro Number, Atomic Radii and Electrochemical Equivalents with 4G Model of Final Unification. Preprints 2024, 2024020468. https://doi.org/10.20944/preprints202402.0468.v1
Download all article in PDF