ABSTRACT
Zinc oxide thin films was deposited by chemical spray pyrolysis (CSP) at 400 °C substrate
temperature and different thickness (60, 80, and 100) nm on the texturized p-Si wafer to fabricate
ZnO/p-Si heterojunction solar cell. Structural, optical, electrical and photovoltaic properties are
investigated for the samples. XRD analysis reveals that all the as deposited ZnO films show
polycrystalline structure, without any change due to increase of thickness. Average diameter
calculated from AFM images shows an increase in its value with increasing thickness, ranging from
59.82-95.7 nm. The optical reflections for samples are measured using UV-Vis spectrophotometer.
Photoluminescence (PL) spectra of (CSP) grown ZnO/p-Si with different thickness were used to study
the energy gap. The electrical properties of heterojunction were obtained by I-V (dark and illuminated)
and C-V measurement. I-V characteristic of the ZnO/p-Si heterojunction shows good rectifying
behavior under dark condition. The ideality factor and the saturation current density was calculated.
Under illuminated the photovoltaic measurements (open-circuit voltage (Voc), short-circuit current
density (JSC), fill factor (FF), and quantum efficiencies are calculated for all samples. The built- in
potential (Vbi), carrier concentration and depletion width are determined under different thickness from
C-V measurement.
References
[1] Minami T., Semicond. Sci. Technol. 20 (2005) 35.
[2] Nadir F. Habubi, Raid A. Ismail, Walid K. Hamoudi and Hassam R. Abid, Surface
Review and Letters 22 (2015) 1550027.
[3] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Appl.
Phys. Lett. 70 (1997) 2230.
[4] Z. A. Shukri, L. S. Yip, C. X. Qiu, I. Shih and C. H. Champness, Sol. Energy Mater.
Sol. Cells 37 (1995) 395.
[5] Choi Y, Lee K, Park CH, Lee KH, Nam J, M Sung MM et al., Journal of Physics D:
Applied Physics 43 (2012) 345101.
[6] Jing MA, Xin JK, Cheng LB, Fei F, Hui X, Chou ZC et al., Chinese Physics Letter 27
(2010) 1.
[7] Skriniarova J., Kovac J, Hasko D., Vincze A., Jakabovic J., Janos L. et al., Journal of
Physics: Conference Series, 100 (2008) 1.
[8] Zhang Y., Guotong D., Zhang B., Cui Y., Zhu H. and Chang Y., Semiconductor Science
and Technology, 20 (2005) 1132.
[9] Yaodong Liu, Lei Zhao, Jianshe Lian, Vacuum 81 (2006) 18.
[10] S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan, Chemical Physics
Letters 525-526 (2012) 72.
[11] Y. Selim Ocak, Journal of Alloys and Compounds 513 (2012) 130.
[12] M. Nawaz, E.S. Marstein and A. Holt, IEEE Photovoltaic Specialist Conference
(PVSC) (2010) 2213-2218.
[13] K. Liu, Makoto Sakurai and Masakazu Aono, Sensors 10 (2010) 8604-8634.
[14] H. Kulg, L. Alexander, X-ray Diffraction Procedures, second ed., NY, USA, (1974).
[15] Vikas K. Sahu, D. Saha, Amit. K. Das, R. S. Ajimsha, M. K. Singh, P. Misra, and L. M.
Kukreja, Applications Physics Express, 3 (2013) 10.
[16] Faxian Xiua, Zheng Yanga, Dengtao Zhaoa, Jianlin Liua, Khan A. Alimb, Alexander A.
Balandinb, Mikhail E. Itkisc, Robert C. Haddonc, Journal of Crystal Growth, 286
(2006) 61.
[17] S. K. Mandal, T. K. Nath, Thin Solid Films 515 (2006) 2535.
[18] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75
(1999) 3366.
[19] Chaabouni F, Abaab M, Rezig B., Superlatt Microstruct 39 (2006) 171.
[20] S. Mridha, M. Dutta, Durga Basak, J Mater Sci: Mater Electron 20 (2009) 376.
[21] F. Z. Bedia, A. Bedia, D kherbouche, B. Benyoucef, International Journal of Materials
Engineering 3 (2013) 59.
[22] V. Kumar, G. S. Sandhu, J., Research Letter in Materials Science 2007 (2007) 5.
Download all article in PDF
Support the magazine and subscribe to the content
This is premium stuff. Subscribe to read the entire article.



