World Scientific News
EISSN 2392-2192
  • Login
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
SUBMIT ARTICLE
Register
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
World Scientific News
No Result
View All Result
Home 2024

Exact Solutions of Partial Differential Equation of Black-Scholes Option Pricing Model using Partial Taylor Series Expansion Method

Author: Gbeminiyi M. Sobamowo, 192 (2024) 226-252

2024-04-07
Reading Time: 5 mins read
0

ABSTRACT

In this paper, a new series solution method called partial Taylor series expansion method is introduced for solving partial differential equations. The method is used in the present work to develop analytical solutions to Black–Scholes differential partial differential equations. The results of the solutions of the method are compared with the results of the exact analytical solutions and excellent agreements are achieved. Moreover, numerical examples for different options pricing are presented to establish the reliability, speed, accuracy, and ease of application of the proposed method.

 

References

  • John C. Hull. Option, Futures and Other Derivatives, Global edition, Eighth edition, Pearson Education Limited. (2015-2016).
  • Lutfi Mardianto, , Aditya Putra Pratama, A. P, Soemarsono, A. R., Hakam, A., Rokhmati, E., Putri, M. . Comparison of Numerical Methods on Pricing of European Put Options. International Journal of Computing Science and Applied Mathematics. 2019, 5(1), 2019
  • Black, F.; Scholes, M.S. The pricing of options and corporate liabilities. Political Econ. 1973, 81, 637–654
  • Merton, C. Theory of rational option pricing, Bell J. Econ. Manage. Sci. 1973, 4, 141–183
  • Black,, M. Scholes, M. The pricing of options and corporate liabilities, J. Pol. Econ. 81 (1973) 637–659
  • Barles, Soner, H. M. Option pricing with transaction costs and a nonlinear Black–Scholes equation, Finance Stoch. 2 (1998) 369–397
  • Company,, Jódar, L., Pintos, J. R. Numerical analysis and computing for option pricing models in illiquid markets, Math. Comput. Modelling 2010, 52 (7–8), 1066–1073.
  • Wilmott,, Howison, S.,  Dewynne, J, The Mathematics of Financial Derivatives: A Student Introduction, Cambridge University Press, Cambridge, 1995.
  • Cen, Z.; Le, A. A robust and accurate finite difference method for a generalized Black-Scholes equation. J. Comput. Appl. Math. 2011, 235, 3728–3733.
  • Cho, C.; Kim, T.; Kwon, Y. Estimation of local volatilities in a generalized Black-Scholes model. Math. Comput. 2005, 162, 1135–1149.
  • Kangro, R.; Nicolaides, R. Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 2000, 38, 1357–1368.
  • Ashyralyev, A.; Erdogan, A.S.; Tekalan, S.N. An investigation on finite difference method for the first order partial differential equation with the nonlocal boundary condition. Comput. Math. 2019, 18, 247–260.
  • Anguelov, R.; Lubuma, J.M. Contributions to the mathematics of the nonstandard finite difference method and applications. Methods Partial Differ. Equ. 2001, 17, 518–543
  • Mickens, R.E. Exact solutions to a finite difference model of a nonlinear reaction-advection equation: Implications for numerical Numer. Methods Part. Differ. Equ. 1989, 5, 313–325.
  • Mickens, R.E. Nonstandard Finite Difference Models of Differential Equations; World Scientific: Singapore, 1994.
  • Mehdizadeh Khalsaraei, M.; Shokri, A.; Mohammadnia, Z.; Sedighi, H.M. Qualitatively Stable Nonstandard Finite Difference Scheme for Numerical Solution of the Nonlinear Black–Scholes Equation. Math. 2021, 2012, 6679484.
  • Mickens, R.E. A nonstandard finite difference scheme for a Fisher PDE having nonlinear diffusion. Math. Appl. 2003, 45, 429–436.
  • Mickens, R.E. Nonstandard finite difference schemes for reaction diffusion equations having linear advection. Methods Partial Differ. Equ. 2000, 4, 361–364.
  • Mickens, R.E.; Jordan, P.M. A new positivity-preserving nonstandard finite difference scheme for the DWE. Methods Partial Differ. Equ. 2005, 21, 976–985.
  • Cen, Z.; Le, A.; Xu, A. Exponential time integration and second-order difference scheme for a generalized Black-Scholes equation. Appl. Math. Art. 2012, 2012, 796814.
  • Kadalbajoo, M.K.; Tripathi, L.P.; Kumar, A. A cubic B-spline collocation method for a numerical solution of the generalized Black-Scholes equation. Comput. Model. 2012, 55, 1483–1505.
  • Valkov, R. Fitted finite volume method for a generalized Black-Scholes equation transformed on finite interval. Algorithms 2014, 65, 195–220.
  • Huang, J.; Cen, Z. Cubic spline method for a generalized Black-Scholes equation. Probl. Eng. Art. 2014, 2014, 484362.
  • Mohammadi, R. Quintic B-spline collocation approach for solving generalized Black-Scholes equation governing option pricing. Math. Appl. 2015, 69, 777–794.
  • Gülkac¸ The homotopy perturbation method for the Black – Scholes equation, J. Stat. Comput. Simul. 2010, 80(12), 1349-1354
  • Kumar, , Yildirim, A., Khan, Y., Jafari, H., Sayevand, K. and I. Wei, I. Analytical Solution of Fractional Black-Scholes European Option Pricing Equation by Using Laplace Transform, Journal of Fractional Calculus and Applications. 2012, 2(8), 1-9.
  • Allahviranloo, T. and S. S. Behzadi,S. The use of iterative methods for solving Black-Scholes equation, Int. J. Ind. Math. 2013, 5(1), 1-11.
  • Edeki, O. Ugbebor, O.O and Owoloka, E.A. Analytical Solutions of the Black–Scholes Pricing Model for European Option Valuation via a Projected Differential Transformation Method, Entropy. 2015, 17, 7510-7521.
  • Edeki, O. Ugbebor, O.O and Ogundile, O.O. Analytical Solutions of a Continuous Arithmetic Asian Model for Option Pricing using Projected Differential Transform Method, Engineering Letters. 2019, 27(2), 303-310.
  • Biazar, J. and F. Goldoust, The Adomian Decomposition Method for the Black-Scholes Equation, 3rd Int. Conf. Appl. Math. Pharm. Scincences, Singapore, 2013, 321-323.
  • Gonz´alez-Gaxiola,, Ru´ız de Ch´avez J. and Santiago, J.A. A Nonlinear Option Pricing Model Through the Adomian Decomposition Method, Int. J. Appl. Comput. Math. 2016, 2, 435-467.
  • Yavuz, M. and Ozdemir, A Quantitative Approach to Fractional Option Pricing Problems with Decomposition Series, Konuralp Journal of Mathematics, 2018, 6(1), 102-109.
  • Putri, R. M., Mardianto, L., Hakam, A., Imron, C., Susanto, H. Removing non-smoothness in solving Black-Scholes equation using aperturbation method. Physics Letters A 402 (2021) 127367
  • Sumiati, , Rusyaman, E. and Sukono. Black-Scholes Equation Solution Using Laplace-Adomian Decomposition Method. IAENG International Journal of Computer Science, 2019, 46(4) (2019), 21.
  • Corliss, G., Chang, Y. F. (1982). Solving ordinary differential equations using Taylor series, ACM Trans. Math. Software 8 (2) (1982) 114–144
  • Chang, Y. -F., Corliss, G. ATOMFT: solving ODEs and DAEs using Taylor series, Math. Appl. 28 (10-12) (1994), 209–233.
  • Pryce J. D. Solving high-index DAEs by Taylor series, Algorithms 19 (1–4)(1998), 195–211.
  • Barrio, R. Performance of the Taylor series method for ODEs/DAEs, Math. Comput. 163 (2) (2005), 525–545.
  • Nedialkov, N. S., Pryce, J. D. Solving differential-algebraic equations by Taylor series. I. Computing Taylor coefficients, BIT 45 (3) (2005), 561–591.
  • Nedialkov, N. S., Pryce, J. D. Solving differential-algebraic equations by Taylor series. II. Computing the system Jacobian, BIT 47 (1)(2007), 121–135.
  • Nedialkov, N. S., Pryce, J. D. Solving differential algebraic equations by Taylor series. III. The DAETS code, Numer. Anal. Ind. Appl. Math. 3 (1-2)(2008), 61–80.
  • Jorba, Á., Zou., M. A software package for the numerical integration of ODEs by means of high-order Taylor methods, Math. 14 (1) (2005), 99–117.
  • Makino, K., Berz, M. Taylor models and other validated functional inclusion methods, J. Pure Appl. Math. 6 (3) (2003), 239–316.
  • Barrio, R. Performance of the Taylor series method for ODEs/DAEs. Math. Comput. 163 (2005), 525-545.
  • Ren, Y, Zhang, B., Qiao, H. A simple Taylor-series expansion method for a class of second kind integral equations. Journal of Computational and Applied Mathematics. 110(1) (1999), 15 15-24.
  • Abbasbandy S. and Bervillier, C. Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations, Math. Comput. 218 (2011), 2178.
  • Kanwal, R. P. and Liu, K. C. A Taylor expansion approach for solving integral equations, J. Math. Ed. Sci. Technol 20 (1989) 411-414.
  • Huang, L., Li, X. F. Zhao, Y. Duan. X. Y. Approximate solution of fractional integro-differential equations by Taylor expansion method, Math. Appl. 62 (2011), 1127-1134.
  • Nedialkov, N. S. and Pryce, J. D. Solving differential-algebraic equations by Taylor series (II): computing the system Jacobian, BIT Numer. Math. 47 (2007), 121-135.
  • Goldfine, A. Taylor series methods for the solution of Volterra integral and integro-differential equations, Comput. 31 (1977), 691-708.
  • Cen, Z., Le, A. (2011). A robust and accurate finite difference method for a generalized Black-Scholes equation. Journal of Computational and Applied Mathematics, 235 (2011), 3728-3733.
  • Aminikhah,, Mehrdoust, F. On Approximate-Analytical Solution of Generalized Black-Scholes Equation. U.P.B. Sci. Bull., Series A, 77(4) (2015), 185-194

Download all article in PDF

WSN 192 (2024) 226-252


 

ADVERTISEMENT
Tags: Black–Scholes modelsFinancial MarketOption pricingpartial Taylor series expansion method
ShareTweetPin
Next Post

Wireless DoorBell System Using Biometrics for Car Parking

Effects of process factors on the characteristics of water based mud viscosified by kaolin and bentonite

View free articles

  • Open access

View Articles

  • 2013 (5)
    • Volume 1 (2013), pp. 1-14 (2)
    • Volume 2 (2013), pp. 1-29 (3)
  • 2014 (13)
    • Volume 3 (2014), pp. 1-21 (3)
    • Volume 4 (2014), pp. 1-16 (2)
    • Volume 5 (2014), pp. 1-36 (4)
    • Volume 6 (2014), pp. 1-23 (3)
  • 2015 (109)
    • Volume 10 (2015), pp. 1-100 (5)
    • Volume 11 (2015), pp. 1-96 (6)
    • Volume 12 (2015), pp. 1-76 (6)
    • Volume 13 (2015), pp. 1-130 (7)
    • Volume 14 (2015), pp. 1-55 (1)
    • Volume 15 (2015), pp. 1-25 (2)
    • Volume 16 (2015), pp. 1-158 (9)
    • Volume 17 (2015), pp. 1-63 (1)
    • Volume 18 (2015), pp. 1-127 (8)
    • Volume 19 (2015), pp. 1-111 (7)
    • Volume 20 (2015), pp. 1-336 (1)
    • Volume 21 (2015), pp. 1-89 (7)
    • Volume 22 (2015), pp. 1-119 (8)
    • Volume 23 (2015), pp. 1-127 (10)
    • Volume 24 (2015), pp. 1-87 (6)
    • Volume 7 (2015), pp. 1-237 (9)
    • Volume 8 (2015), pp. 1-203 (7)
    • Volume 9 (2015), pp. 1-160 (9)
  • 2016 (517)
    • Volume 25 (2016), pp. 1-16 (2)
    • Volume 26 (2016), pp. 1-19 (2)
    • Volume 27 (2016), pp. 1-16 (2)
    • Volume 28 (2016), pp. 1-100 (7)
    • Volume 29 (2016), pp. 1-95 (6)
    • Volume 30 (2016), pp. 1-142 (10)
    • Volume 31 (2016), pp. 1-124 (8)
    • Volume 32 (2016), pp. 1-81 (9)
    • Volume 33 (2016), pp. 1-121 (8)
    • Volume 34 (2016), pp. 1-145 (10)
    • Volume 35 (2016), pp. 1-133 (10)
    • Volume 36 (2016), pp. 1-152 (10)
    • Volume 37 (2016), pp. 1-303 (18)
    • Volume 38 (2016), pp. 1-59 (1)
    • Volume 39 (2016), pp. 1-30 (2)
    • Volume 40 (2016), pp. 1-299 (20)
    • Volume 41 (2016), pp. 1-287 (36)
    • Volume 42 (2016), pp. 1-316 (21)
    • Volume 43(1,2,3) (2016), pp. 1-157 (3)
      • Volume 43, Issue 1 (2016), pp. 1-55 (1)
      • Volume 43, Issue 2 (2016), pp. 56-103 (1)
      • Volume 43, Issue 3 (2016), pp. 104-157 (1)
    • Volume 44 (2016), pp. 1-301 (20)
    • Volume 45(1,2) (2016), pp. 1-383 (21)
      • Volume 45, Issue 1 (2016), pp. 1-62 (1)
      • Volume 45, Issue 2 (2016), pp. 63-383 (20)
    • Volume 46 (2016), pp. 1-286 (20)
    • Volume 47(1,2) (2016), pp. 1-350 (21)
      • Volume 47, Issue 1 (2016), pp. 1-61 (1)
      • Volume 47, Issue 2 (2016), pp. 62-350 (20)
    • Volume 48 (2016), pp. 1-163 (17)
    • Volume 49(1,2) (2016), pp. 1-404 (21)
      • Volume 49, Issue 1 (2016), pp. 1-58 (1)
      • Volume 49, Issue 2 (2016), pp. 59-404 (20)
    • Volume 50 (2016), pp. 1-316 (20)
    • Volume 51 (2016), pp. 1-71 (7)
    • Volume 52 (2016), pp. 1-275 (20)
    • Volume 53(1,2,3) (2016), pp. 1-429 (22)
      • Volume 53, Issue 1 (2016), pp. 1-66 (1)
      • Volume 53, Issue 2 (2016), pp. 67-109 (1)
      • Volume 53, Issue 3 (2016), pp. 110-429 (20)
    • Volume 54 (2016), pp. 1-299 (20)
    • Volume 55 (2016), pp. 1-288 (20)
    • Volume 56 (2015), pp. 1-266 (20)
    • Volume 57 (2016), pp. 1-570 (53)
    • Volume 58 (2016), pp. 1-161 (10)
    • Volume 59 (2016), pp. 1-128 (10)
    • Volume 60 (2016), pp. 1-120 (10)
  • 2017 (481)
    • Volume 61(1,2) (2017), pp. 1-194 (11)
      • Volume 61, Issue 1 (2017), pp. 1-51 (1)
      • Volume 61, Issue 2 (2017), pp. 52-194 (10)
    • Volume 62 (2017), pp. 1-146 (10)
    • Volume 63 (2017), pp. 1-240 (1)
    • Volume 64 (2017), pp. 1-140 (10)
    • Volume 65 (2017), pp. 1-175 (10)
    • Volume 66 (2017), pp. 1-300 (20)
    • Volume 67(1,2,) (2017), pp. 1-389 (21)
      • Volume 67, Issue 1 (2017), pp. 1-67 (1)
      • Volume 67, Issue 2 (2017), pp. 68-389 (20)
    • Volume 68 (2017), pp. 1-141 (1)
    • Volume 69 (2017), pp. 1-253 (20)
    • Volume 70(1,2) (2017), pp. 1-321 (21)
      • Volume 70, Issue 1 (2017), pp. 1-50 (1)
      • Volume 70, Issue 2 (2017), pp. 51-321 (20)
    • Volume 71 (2017), pp. 1-219 (18)
    • Volume 72 (2017), pp. 1-478 (46)
    • Volume 73 (2017), pp. 1-133 (15)
    • Volume 74 (2017), pp. 1-287 (20)
    • Volume 75 (2017), pp. 1-111 (12)
    • Volume 76 (2017), pp. 1-199 (20)
    • Volume 77(1,2) (2017), pp. 1-380 (21)
      • Volume 77, Issue 1 (2017), pp. 1-102 (1)
      • Volume 77, Issue 2 (2017), pp. 103-380 (20)
    • Volume 78 (2017), pp. 1-230 (24)
    • Volume 79 (2017), pp. 1-89 (1)
    • Volume 80 (2017), pp. 1-323 (20)
    • Volume 81(1,2) (2017), pp. 1-312 (21)
      • Volume 81, Issue 1 (2017), pp. 1-47 (1)
      • Volume 81, Issue 2 (2017), pp. 48-312 (20)
    • Volume 82 (2017), pp. 1-90 (1)
    • Volume 83 (2017), pp. 1-239 (20)
    • Volume 84 (2017), pp. 1-92 (1)
    • Volume 85 (2017), pp. 1-73 (10)
    • Volume 86(1,2,3) (2017), pp. 1-370 (22)
      • Volume 86, Issue 1 (2017), pp. 1-58 (1)
      • Volume 86, Issue 2 (2017), pp. 59-122 (1)
      • Volume 86, Issue 3 (2017), pp. 123-370 (20)
    • Volume 87 (2017), pp. 1-255 (20)
    • Volume 88(1,2) (2017), pp. 1-226 (11)
      • Volume 88, Issue 1 (2017), pp. 1-57 (1)
      • Volume 88, Issue 2 (2017), pp. 58-226 (10)
    • Volume 89 (2017), pp. 1-321 (33)
    • Volume 90 (2017), pp. 1-270 (20)
  • 2018 (486)
    • Volume 100 (2018), pp. 1-253 (20)
    • Volume 101 (2018), pp. 1-252 (20)
    • Volume 102 (2018), pp. 1-223 (20)
    • Volume 103 (2018), pp. 1-249 (18)
    • Volume 104 (2018), pp. 1-492 (40)
    • Volume 105 (2018), pp. 1-232 (20)
    • Volume 106 (2018), pp. 1-244 (20)
    • Volume 107 (2018), pp. 1-232 (20)
    • Volume 108 (2018), pp. 1-244 (20)
    • Volume 109 (2018), pp. 1-266 (19)
    • Volume 110 (2018), pp. 1-243 (20)
    • Volume 111 (2018), pp. 1-181 (17)
    • Volume 112 (2018), pp. 1-251 (20)
    • Volume 113 (2018), pp. 1-250 (26)
    • Volume 114 (2018), pp. 1-264 (20)
    • Volume 91 (2018), pp. 1-137 (10)
    • Volume 92(1,2) (2018), pp. 1-399 (21)
      • Volume 92, Issue 1 (2018), pp. 1-138 (1)
      • Volume 92, Issue 2 (2018), pp. 139-399 (20)
    • Volume 93 (2018), pp. 1-141 (15)
    • Volume 94(1,2) (2018), pp. 1-332 (21)
      • Volume 94, Issue 1 (2018), pp. 1-71 (1)
      • Volume 94, Issue 2 (2018), pp. 72-332 (20)
    • Volume 95 (2018), pp. 1-272 (20)
    • Volume 96 (2018), pp. 1-250 (20)
    • Volume 97 (2018), pp. 1-284 (20)
    • Volume 98 (2018), pp. 1-232 (20)
    • Volume 99 (2018), pp. 1-229 (19)
  • 2019 (467)
    • Volume 115 (2019), pp. 1-268 (20)
    • Volume 116 (2019), pp. 1-252 (19)
    • Volume 117 (2019), pp. 1-242 (20)
    • Volume 118 (2019), pp. 1-280 (20)
    • Volume 119 (2019), pp. 1-253 (20)
    • Volume 120(1,2) (2019), pp. 1-295 (21)
      • Volume 120, Issue 1 (2019), pp. 1-59 (1)
      • Volume 120, Issue 2 (2019), pp. 60-295 (20)
    • Volume 121 (2019), pp. 1-100 (13)
    • Volume 122 (2019), pp. 1-262 (20)
    • Volume 123 (2019), pp. 1-273 (20)
    • Volume 124(1,2) (2019), pp. 1-333 (21)
      • Volume 124, Issue 1 (2019), pp. 1-85 (1)
      • Volume 124, Issue 2 (2019), pp. 86-1-333 (20)
    • Volume 125 (2019), pp. 1-259 (20)
    • Volume 126 (2019), pp. 1-298 (20)
    • Volume 127(1,2,3) (2019), pp. 1-376 (22)
      • Volume 127, Issue 1 (2019), pp. 1-55 (1)
      • Volume 127, Issue 2 (2019), pp. 56-105 (1)
      • Volume 127, Issue 3 (2019), pp. 106-376 (20)
    • Volume 128(1,2) (2019), pp. 1-432 (21)
      • Volume 128, Issue 1 (2019), pp. 1-70 (1)
      • Volume 128, Issue 2 (2019), pp. 71-432 (20)
    • Volume 129 (2019), pp. 1-267 (20)
    • Volume 130 (2019), pp. 1-308 (20)
    • Volume 131 (2019), pp. 1-288 (20)
    • Volume 132 (2019), pp. 1-312 (24)
    • Volume 133 (2019), pp. 1-274 (20)
    • Volume 134(1,2) (2020), pp. 1-338 (21)
      • Volume 134, Issue 1 (2019), pp. 1-51 (1)
      • Volume 134, Issue 2 (2019), pp. 52-338 (20)
    • Volume 135 (2019), pp. 1-298 (22)
    • Volume 136 (2019), pp. 1-246 (16)
    • Volume 137 (2019), pp. 1-236 (14)
    • Volume 138(1,2) (2019), pp. 1-294 (13)
      • Volume 138, Issue 1 (2019), pp. 1-64 (1)
      • Volume 138, Issue 2 (2019), pp. 65-294 (12)
  • 2020 (179)
    • Volume 139(1,2) (2020), pp. 1-258 (13)
      • Volume 139, Issue 1 (2020), pp. 1-60 (1)
      • Volume 139, Issue 2 (2020), pp. 61-258 (12)
    • Volume 140 (2020), pp. 1-184 (10)
    • Volume 141 (2020), pp. 1-155 (10)
    • Volume 142 (2020), pp. 1-194 (12)
    • Volume 143 (2020), pp. 1-261 (16)
    • Volume 144 (2020), pp. 1-449 (30)
    • Volume 145 (2020), pp. 1-408 (30)
    • Volume 146 (2020), pp. 1-289 (18)
    • Volume 147 (2020), pp. 1-208 (12)
    • Volume 148 (2020), pp. 1-121 (8)
    • Volume 149 (2020), pp. 1-165 (10)
    • Volume 150 (2020), pp. 1-181 (10)
  • 2021 (143)
    • Volume 151 (2021), pp. 1-122 (8)
    • Volume 152 (2021), pp. 1-125 (8)
    • Volume 153(1,2) (2021), pp. 1-215 (13)
      • Volume 153, Issue 1 (2021), pp. 1-42 (1)
      • Volume 153, Issue 2 (2021), pp. 43-215 (12)
    • Volume 154 (2021), pp. 1-174 (10)
    • Volume 155 (2021), pp. 1-154 (10)
    • Volume 156 (2021), pp. 1-191 (12)
    • Volume 157 (2021), pp. 1-188 (10)
    • Volume 158 (2021), pp. 1-298 (16)
    • Volume 159 (2021), pp. 1-223 (14)
    • Volume 160 (2021), pp. 1-337 (20)
    • Volume 161 (2021), pp. 1-156 (10)
    • Volume 162 (2021), pp. 1-178 (12)
  • 2022 (125)
    • Volume 163 (2022), pp. 1-157 (8)
    • Volume 164 (2022), pp. 1-149 (8)
    • Volume 165 (2022), pp. 1-209 (12)
    • Volume 166 (2022), pp. 1-145 (10)
    • Volume 167 (2022), pp. 1-161 (9)
    • Volume 168 (2022), pp. 1-146 (10)
    • Volume 169 (2022), pp. 1-201 (10)
    • Volume 170 (2022), pp. 1-171 (10)
    • Volume 171 (2022), pp. 1-125 (8)
    • Volume 172 (2022), pp. 1-333 (20)
    • Volume 173 (2022), pp. 1-161 (10)
    • Volume 174 (2022), pp. 1-176 (10)
  • 2023 (132)
    • Volume 175 (2023), pp. 1-108 (8)
    • Volume 176 (2023), pp. 1-174 (10)
    • Volume 177 (2023), pp. 1-136 (8)
    • Volume 178 (2023), pp. 1-165 (10)
    • Volume 179 (2023), pp. 1-164 (10)
    • Volume 180 (2023), pp. 1-162 (12)
    • Volume 181 (2023), pp. 1-215 (12)
    • Volume 182 (2023), pp. 1-265 (18)
    • Volume 183 (2023), pp. 1-226 (14)
    • Volume 184 (2023), pp. 1-154 (10)
    • Volume 185 (2023), pp. 1-191 (10)
    • Volume 186 (2023), pp. 1-160 (10)
  • 2024 (183)
    • Volume 187 (2024), pp. 1-156 (10)
    • Volume 188 (2024), pp. 1-197 (12)
    • Volume 189 (2024), pp. 1-310 (20)
    • Volume 190(1,2) (2024), pp. 1-351 (18)
      • Volume 190, Issue 1 (2024), pp. 1-69 (1)
      • Volume 190, Issue 2 (2024), pp. 70-351 (17)
    • Volume 191 (2024), pp. 1-207 (12)
    • Volume 192 (2024), pp. 1-319 (20)
    • Volume 193(1,2) (2024), pp. 1-252 (13)
      • Volume 193, Issue 1 (2024), pp. 1-45 (1)
      • Volume 193, Issue 2 (2024), pp. 46-252 (12)
    • Volume 194 (2024), pp. 1-213 (13)
    • Volume 195 (2024), pp. 1-235 (13)
    • Volume 196 (2024), pp. 1-221 (14)
    • Volume 197 (2024), pp. 1-231 (15)
    • Volume 198 (2024), pp. 1-402 (23)
  • 2025 (169)
    • Volume 199 (2025), pp. 1-253 (16)
    • Volume 200 (2025), pp. 1-223 (14)
    • Volume 201 (2025), pp. 1-245 (12)
    • Volume 202 (2025), pp. 1-317 (17)
    • Volume 203 (2025), pp. 1-438 (15)
    • Volume 204 (2025), pp. 1-353 (19)
    • Volume 205 (2025), pp. 1-272 (16)
    • Volume 206 (2025), pp. 1-172 (13)
    • Volume 207 (2025), pp. 1-173 (12)
    • Volume 208 (2025), pp. 1-174 (11)
    • Volume 209 (2025), pp. 1-184 (12)
    • Volume 210 (2025), pp. 1-158 (12)
  • 2026 (21)
    • Volume 211 (2026), pp. (21)
  • Info (6)
  • News (3)
  • Open access (460)
  • Premium (38)

Last Articles

  • All
  • Premium
  • Open access

Special features of the strategic development identification over commercial banks

2024-02-13

Are sins of past generations inherited? Theoretical reflections on concepts of collective guilt and collective responsibility along with the analysis of their influence on today’s Germany decision-making

2024-02-20

Myogenic regulatory cactors in myogenesis and regeneration of skeletal muscle

2024-02-24

Popular Articles

  • About Us

    About Us

    0 shares
    Share 0 Tweet 0
  • Submit your Article

    0 shares
    Share 0 Tweet 0
  • Jeevamrut – A Natural Fertilizer

    0 shares
    Share 0 Tweet 0
  • Abstracting & Indexing

    0 shares
    Share 0 Tweet 0
  • Guide for Authors

    0 shares
    Share 0 Tweet 0

Careers

  • All
  • Careers
No Content Available
World Scientific News

World Scientific News (WSN) is an open-access fully peer-reviewed scholarly journal. The monthly – interdisciplinary journal is directed in the first place to scientists who want to publish their findings, insights, observations, conclusions, etc.

READ MORE

Menu

  • Home
  • About Us
  • Editorial Board
  • Guide for Authors
  • Instruction for Authors
  • Abstracting & Indexing
  • Submit your Article
  • Careers
  • News

Other databases

AGRO
CAS
Google Scholar
Google Scholar Metrics
ICZN
ProQuest
Road Directory
ZooBank

EISSN 2392-2192

Login / Register
Privacy Policy
Cookie Policy

made by fixfix

No Result
View All Result
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News

made by fixfix

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.