World Scientific News
EISSN 2392-2192
  • Login
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
SUBMIT ARTICLE
Register
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
World Scientific News
No Result
View All Result
Home 2023

Design of Potential Drugs and Vaccines for COVID 19 by the Application of Machine Learning and Artificial Intelligence

Authors: Indrani Sarkar, Sudeshna Sarkar, 183 (2023) 71-89

2024-01-04
Reading Time: 6 mins read
0

ABSTRACT

Computational methods like neural network and genetic algorithm can be used to speed up the drug discovery process. Machine learning method like artificial neural networks is widely used in pharmaceutical industry. ANNs have some advantages over classical statistical methods because they can investigate complex, nonlinear relationships. sequence alignment, variable selection in quantitative structure activity relationship (QSAR) studies. Chemical and biological activity of a drug is closely related to its properties known as descriptors. The goal is to find a model which will correlate the inputs (properties) with a target (biological activity). The methodology is known as Quantitative Structure-Activity / Property Relationship (QSAR/QSPR). QSAR/QSPR correlates topological, electronic and quantum properties of compounds with their biological activities. Virtual Screening (VS) method “screen” compounds with known chemical motifs called “pharmacophores” amid millions of other compounds in a data base. These screened compounds are potential drugs and can be tested experimentally for their biological activities. The ANN technology is used to study interactions and dynamics between compounds and receptor proteins or nucleic acids in the area of pharmacokinetics and pharmacodynamics. Some more applications of ANN are: data analysis, comparison/ classification of drug libraries, study of HIV-1 reverse transcriptase, gene prediction and homology searches in protein. Comparative molecular surface analysis (COMSA), a 3D QSAR method uses ANN to map the mean electrostatic potential on the molecular surface. Genetic algorithms (GAs) are stochastic optimization methods. A QSAR model can be made by variable selection, PLS (partial least squares) and cross validation using GA. Pharmacophore modelling is done by comparing some important electronic and 3D structural features required for a potent group of ligands/drugs when the receptor or target is unknown. This article discusses immense application of ANNs and GAs in the drug discovery process. The future prospect of Artificial Intelligence in drug and vaccine design, COVID-19 management and prediction are also discussed.

 

References

  • Alyasseri, Z. A. A., Al-Betar, M. A., Doush, I. A., Awadallah, M. A., Abasi, A. K., Makhadmeh, S. N., Alomari, O. A., Abdulkareem, K. H., Adam, A., Damasevicius, R., Mohammed, M. A., Zitar, R. A., Review on COVID-19 diagnosis models based on machine learning and deep learning approaches. Expert Systems, (2022), 39(3).
  • Arash Keshavarzi Arshadi, Julia Webb, Milad Salem, Emmanuel Cruz, Stacie Calad-Thomson, Niloofar Ghadirian, Jennifer Collins, Elena Diez-Cecilia, Brendan Kelly, Hani Goodarzi and JiannShiun Yuan, Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Frontiers in Artificial Intelligence, August (2020), 3 (65)
  • Breiman L., Random forests. Machine Learning, (2001), 45(1), 5–32
  • Beck B. R., Shin B., Choi Y., Park S., and Kang K., Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal, (2020), 18: 784–790
  • Batool M, Ahmad B. and Choi S., A structure-based drug discovery paradigm. International Journal of Molecular Sciences, (2019) 20(11), 2783
  • Cramer R. D., Patterson D. E. and Bunce J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, (1988), 110(18): 5959–5967
  • Cortes C. And Vapnik V., Support-vector networks. Machine Learning, (1995), 20(3): 273–297
  • Dai, L., Gao, G. F., Viral targets for vaccines against COVID-19, Nature Reviews Immunology (2020) 21, 73–82
  • Durrant J. D. and McCammon J. A., Molecular dynamics simulations and drug discovery. BMC Biology, (2011), 9(1): 1–9
  • Dixon S. L., Smondyrev A. M. and Rao S. N., PHASE: a novel approach to pharmacophore modelling and 3D data- base searching, Chemical Biology & Drug Design, (2006), 67(5): 370–372
  • Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2021 Jun; 39(9): 3347-3357. doi: 10.1080/07391102.2020.1763201
  • Elfiky A. A., SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in-silico perspective. Journal of Biomolecular Structure and Dynamics, (2021), 39(9): 3204–3212
  • Goyal B.and Goyal D., Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Combinatorial Science (2020), 22(6): 297–305
  • Gunjan Arora, Jayadev Joshi, Rahul Shubhra Mandal, Nitisha Shrivastava, Richa Virmani and Tavpritesh Sethi, Review: Artificial Intelligence in Surveillance, Diagnosis, Drug Discovery and Vaccine Development against COVID-19. Pathogens, (2021), 10: 1048
  • Huang S.Y. and. Zou X, Advances and challenges in protein-ligand docking. International Journal of Molecular Sciences, (2010), 11(8), 3016–3034
  • Kalyaanamoorthy S. and Chen Y.P. P., Structure-based drug design to augment hit discovery. Drug Discovery Today, (2011), 16(17–18), 831–839
  • Klebe G., Abraham U. and Mietzner T., Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, Journal of Medicinal Chemistry, (1994), 37(24): 4130-4146
  • Li H., Sutter J. and Hoffmann R., Hypo Gen: an automated system for generating 3D predictive pharmacophore models. Pharmacophore Perception, Development, and Use in Drug Design, (2000), 2: 171
  • Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021 Feb;21(2):73-82. doi: 10.1038/s41577-020-00480-0
  • Lionta E., Spyrou G, Vassilatis D. K., and Cournia Z., Structure-based virtual screening for drug discovery: principles applications and recent advances. Current Topics in Medicinal Chemistry (2014), 14(16): 1923–1938
  • Melo-Filho C. C., Braga R. C. and Andrade C. H., 3D-QSAR approaches in drug design: perspectives to generate reliable CoMFA models, Current Computer-Aided Drug Design, (2014), 10 (2):148–159
  • Ma J., Sheridan R. P., Liaw A., Dahl G. E. and Svetnik V., Deep neural nets as a method for quantitative structure– activity relationships, Journal of Chemical Information and Modeling, (2015), 55 (2): 263–274
  • Na Zhu, Dingyu Zhang, Wenling Wang, Xingwang Li, Bo Yang, Jingdong Song, Xiang Zhao, Baoying Huang, Weifeng Shi, Roujian Lu, Peihua Niu, Faxian Zhan, Xuejun Ma, Dayan Wang, Wenbo Xu, Guizhen Wu, George F Gao, Wenjie Tan; China Novel Coronavirus Investigating and Research Team A novel coronavirus from patients with pneumonia in China, 2019, 2020. New England Journal of Medicine, 382(8): 727–733
  • Patel H., Noolvi M., Poonam Sharma, V. Jaiswal, S. Bansal, Sandeep Lohan, Suthar Sharad Kumar, Vikrant Abbot, Saurabh Dhiman, Varun Bhardwaj, Quantitative structure–activity relationship (QSAR) studies as strategic approach in drug discovery, Medicinal Chemistry Research, (2014), 23(12): 4991–5007
  • Patel L., Shukla T., Huang X., Ussery D. W., and Wang S., Machine learning methods in drug discovery, Molecules, (2020), 25(22): 5277
  • Pillaiyar T., Meenakshisundaram S., and Manickam M., Recent discovery and development of inhibitors targeting coronaviruses, Drug Discovery Today (2020), 25(4): 668–688
  • Quentin Haas, Nikolay Borisov, David Vicente Alvarez, Sohrab Ferdowsi, Leonhard von Mayenn, Douglas Teodoro, Poorya Amini, Vaccine Development in the Time of COVID-19: The Relevance of the Risklick AI to Assist in Risk Assessment and Optimize Performance, Front. Digit. Health. 02 November (2021)
  • Quentin Haas, David Vicente Alvarez, Nikolay Borissov, Sohrab Ferdowsi, Leonhard von Meyenn, Sven Trelle, Douglas Teodoro, Poorya Amini, Utilizing artificial intelligence to manage COVID-19 scientific evidence torrent with Risklick AI: a critical tool for pharmacology and therapy development. Pharmacology (2021) 106: 244–253
  • Quoc-Viet Pham1, Dinh C. Nguyen, Thien Huynh-The, Won-Joo Hwang and Pubudu N. Pathirana, Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19) Pandemic: A Survey on the State-of-the-Arts, IEEE ACCESS, (2020), 4.
  • Rishi R. Gupta, Application of Artificial Intelligence and Machine Learning in Drug Discovery. Methods Mol Biol. (2022); 2390: 113-124
  • Rakesh S Joshi, Shounak S Jagdale, Sneha B Bansode, S Shiva Shankar, Meenakshi B Tellis , Vaibhav Kumar Pandya, Anita Chugh , Ashok P Giri , Mahesh J Kulkarni , Discovery of potential multi-target-directed ligands by targeting host- specific SARS-CoV-2 structurally conserved main protease, Journal of Biomolecular Structure and Dynamics, (2020), 39(9): 1–16
  • Selvaraj C, Dinesh DC, Panwar U, Abhirami R, Boura E, Singh SK. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. J Biomol Struct Dyn. 2021 Aug; 39(13): 4582-4593. doi: 10.1080/07391102.2020.1778535
  • Sammut C. and Webb G. I., Naïve Bayes BT, Encyclopedia of Machine Learning, Springer Science & Business Media (2010)
  • Sobhia M.E., Ghosh K, Sivangula S and Kumar G.S. Deciphering COVID-19 Enigma by Targeting SARS-COV-2 Main Protease Using IN-SILICOApproaches. IJPSR (2021), 12, (6): 3104-3119
  • Stefania Monteleone, Tahsin F. Kellici, Michelle Southey, Michael J. Bodkin, Alexander Heifetz, Fighting COVID 19 with Artificial Intelligence, Methods Mol Biol. (2022); 2390: 103-112
  • A. Khan, Zia K., Ashraf S., Uddin R. and Ul-Haq Z., Identification of chymotrypsin-like protease inhibitors of SARS- CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, (2020) vol. 39, no. 7, pp. 2607–2616
  • Sinosh Skariyachan, Dharshini Gopal, Shweta Chakrabarti, Priya Kempanna, Akshay Uttarkar, Aditi G Muddebihalkar, Vidya Niranjan, Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs. Computers in Biology and Medicine, (2020), 126, 104054
  • Teodoro D, Ferdowsi S, Borissov N, Kashani E, Vicente Alvarez D, Copara J, Gouareb R, Naderi N, Amini P. Information Retrieval in an Infodemic: The Case of COVID-19 Publications. J Med Internet Res. 2021 Sep 17; 23(9): e30161. doi: 10.2196/30161
  • Tânia Cova, Carla Vitorino, Márcio Ferreira, Sandra Nunes, Paola Rondon-Villarreal, Alberto Pais, Artificial Intelligence and Quantum Computing as the next Pharma Disrupters, Artificial Intelligence in Drug Design. (2021): 321–347
  • Van Drie J. H, Generation of three-dimensional pharmacophore models, Wiley Interdisciplinary Reviews: Computational Molecular Science, (2013), 3(5): 449–464
  • Wang L., Ding J., Pan L., Cao D., Jiang H., and Ding X., Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems, (2019), 194, 103850
  • Wahedi H. M., Ahmad S. and Abbasi S. W., Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, (2021), 39(9): 3225–3234
  • Wang L, Zhang Y, Wang D, Tong X, Liu T, Zhang S, Huang J, Zhang L, Chen L, Fan H and Clarke M, Artificial Intelligence for COVID-19: A Systematic Review. Med. 8: 704256
  • Wenhao Dai, Bing Zhang, Xia-Ming Jiang, Haixia Su, Jian Li, Yao Zhao, Xiong Xie, Zhenmin Jin, Jingjing Peng, Fengjiang Liu, Chunpu Li, You Li, Fang Bai, Haofeng Wang, Xi Cheng, Xiaobo Cen, Shulei Hu, Xiuna Yang, Jiang Wang, Xiang Liu, Gengfu Xiao, Hualiang Jiang, Zihe Rao, Lei-Ke Zhang, Yechun Xu, Haitao Yang, Hong Liu, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (2020), 368( 6497): 1331-1335

Download all article in PDF

WSN 183 (2023) 71-89


 

ADVERTISEMENT
Tags: Artificial IntelligenceComputer Aided Drug DesignCOVID-19Covid-19 Vaccine DesignMachine LearningMolecular Modeling
ShareTweetPin
Next Post

The temperature of electromagnetic waves and bounds for wavelengths of electromagnetic waves

Cassava peels as feed resource for animal production - A review

View free articles

  • Open access

View Articles

  • 2013 (5)
    • Volume 1 (2013), pp. 1-14 (2)
    • Volume 2 (2013), pp. 1-29 (3)
  • 2014 (13)
    • Volume 3 (2014), pp. 1-21 (3)
    • Volume 4 (2014), pp. 1-16 (2)
    • Volume 5 (2014), pp. 1-36 (4)
    • Volume 6 (2014), pp. 1-23 (3)
  • 2015 (109)
    • Volume 10 (2015), pp. 1-100 (5)
    • Volume 11 (2015), pp. 1-96 (6)
    • Volume 12 (2015), pp. 1-76 (6)
    • Volume 13 (2015), pp. 1-130 (7)
    • Volume 14 (2015), pp. 1-55 (1)
    • Volume 15 (2015), pp. 1-25 (2)
    • Volume 16 (2015), pp. 1-158 (9)
    • Volume 17 (2015), pp. 1-63 (1)
    • Volume 18 (2015), pp. 1-127 (8)
    • Volume 19 (2015), pp. 1-111 (7)
    • Volume 20 (2015), pp. 1-336 (1)
    • Volume 21 (2015), pp. 1-89 (7)
    • Volume 22 (2015), pp. 1-119 (8)
    • Volume 23 (2015), pp. 1-127 (10)
    • Volume 24 (2015), pp. 1-87 (6)
    • Volume 7 (2015), pp. 1-237 (9)
    • Volume 8 (2015), pp. 1-203 (7)
    • Volume 9 (2015), pp. 1-160 (9)
  • 2016 (517)
    • Volume 25 (2016), pp. 1-16 (2)
    • Volume 26 (2016), pp. 1-19 (2)
    • Volume 27 (2016), pp. 1-16 (2)
    • Volume 28 (2016), pp. 1-100 (7)
    • Volume 29 (2016), pp. 1-95 (6)
    • Volume 30 (2016), pp. 1-142 (10)
    • Volume 31 (2016), pp. 1-124 (8)
    • Volume 32 (2016), pp. 1-81 (9)
    • Volume 33 (2016), pp. 1-121 (8)
    • Volume 34 (2016), pp. 1-145 (10)
    • Volume 35 (2016), pp. 1-133 (10)
    • Volume 36 (2016), pp. 1-152 (10)
    • Volume 37 (2016), pp. 1-303 (18)
    • Volume 38 (2016), pp. 1-59 (1)
    • Volume 39 (2016), pp. 1-30 (2)
    • Volume 40 (2016), pp. 1-299 (20)
    • Volume 41 (2016), pp. 1-287 (36)
    • Volume 42 (2016), pp. 1-316 (21)
    • Volume 43(1,2,3) (2016), pp. 1-157 (3)
      • Volume 43, Issue 1 (2016), pp. 1-55 (1)
      • Volume 43, Issue 2 (2016), pp. 56-103 (1)
      • Volume 43, Issue 3 (2016), pp. 104-157 (1)
    • Volume 44 (2016), pp. 1-301 (20)
    • Volume 45(1,2) (2016), pp. 1-383 (21)
      • Volume 45, Issue 1 (2016), pp. 1-62 (1)
      • Volume 45, Issue 2 (2016), pp. 63-383 (20)
    • Volume 46 (2016), pp. 1-286 (20)
    • Volume 47(1,2) (2016), pp. 1-350 (21)
      • Volume 47, Issue 1 (2016), pp. 1-61 (1)
      • Volume 47, Issue 2 (2016), pp. 62-350 (20)
    • Volume 48 (2016), pp. 1-163 (17)
    • Volume 49(1,2) (2016), pp. 1-404 (21)
      • Volume 49, Issue 1 (2016), pp. 1-58 (1)
      • Volume 49, Issue 2 (2016), pp. 59-404 (20)
    • Volume 50 (2016), pp. 1-316 (20)
    • Volume 51 (2016), pp. 1-71 (7)
    • Volume 52 (2016), pp. 1-275 (20)
    • Volume 53(1,2,3) (2016), pp. 1-429 (22)
      • Volume 53, Issue 1 (2016), pp. 1-66 (1)
      • Volume 53, Issue 2 (2016), pp. 67-109 (1)
      • Volume 53, Issue 3 (2016), pp. 110-429 (20)
    • Volume 54 (2016), pp. 1-299 (20)
    • Volume 55 (2016), pp. 1-288 (20)
    • Volume 56 (2015), pp. 1-266 (20)
    • Volume 57 (2016), pp. 1-570 (53)
    • Volume 58 (2016), pp. 1-161 (10)
    • Volume 59 (2016), pp. 1-128 (10)
    • Volume 60 (2016), pp. 1-120 (10)
  • 2017 (481)
    • Volume 61(1,2) (2017), pp. 1-194 (11)
      • Volume 61, Issue 1 (2017), pp. 1-51 (1)
      • Volume 61, Issue 2 (2017), pp. 52-194 (10)
    • Volume 62 (2017), pp. 1-146 (10)
    • Volume 63 (2017), pp. 1-240 (1)
    • Volume 64 (2017), pp. 1-140 (10)
    • Volume 65 (2017), pp. 1-175 (10)
    • Volume 66 (2017), pp. 1-300 (20)
    • Volume 67(1,2,) (2017), pp. 1-389 (21)
      • Volume 67, Issue 1 (2017), pp. 1-67 (1)
      • Volume 67, Issue 2 (2017), pp. 68-389 (20)
    • Volume 68 (2017), pp. 1-141 (1)
    • Volume 69 (2017), pp. 1-253 (20)
    • Volume 70(1,2) (2017), pp. 1-321 (21)
      • Volume 70, Issue 1 (2017), pp. 1-50 (1)
      • Volume 70, Issue 2 (2017), pp. 51-321 (20)
    • Volume 71 (2017), pp. 1-219 (18)
    • Volume 72 (2017), pp. 1-478 (46)
    • Volume 73 (2017), pp. 1-133 (15)
    • Volume 74 (2017), pp. 1-287 (20)
    • Volume 75 (2017), pp. 1-111 (12)
    • Volume 76 (2017), pp. 1-199 (20)
    • Volume 77(1,2) (2017), pp. 1-380 (21)
      • Volume 77, Issue 1 (2017), pp. 1-102 (1)
      • Volume 77, Issue 2 (2017), pp. 103-380 (20)
    • Volume 78 (2017), pp. 1-230 (24)
    • Volume 79 (2017), pp. 1-89 (1)
    • Volume 80 (2017), pp. 1-323 (20)
    • Volume 81(1,2) (2017), pp. 1-312 (21)
      • Volume 81, Issue 1 (2017), pp. 1-47 (1)
      • Volume 81, Issue 2 (2017), pp. 48-312 (20)
    • Volume 82 (2017), pp. 1-90 (1)
    • Volume 83 (2017), pp. 1-239 (20)
    • Volume 84 (2017), pp. 1-92 (1)
    • Volume 85 (2017), pp. 1-73 (10)
    • Volume 86(1,2,3) (2017), pp. 1-370 (22)
      • Volume 86, Issue 1 (2017), pp. 1-58 (1)
      • Volume 86, Issue 2 (2017), pp. 59-122 (1)
      • Volume 86, Issue 3 (2017), pp. 123-370 (20)
    • Volume 87 (2017), pp. 1-255 (20)
    • Volume 88(1,2) (2017), pp. 1-226 (11)
      • Volume 88, Issue 1 (2017), pp. 1-57 (1)
      • Volume 88, Issue 2 (2017), pp. 58-226 (10)
    • Volume 89 (2017), pp. 1-321 (33)
    • Volume 90 (2017), pp. 1-270 (20)
  • 2018 (486)
    • Volume 100 (2018), pp. 1-253 (20)
    • Volume 101 (2018), pp. 1-252 (20)
    • Volume 102 (2018), pp. 1-223 (20)
    • Volume 103 (2018), pp. 1-249 (18)
    • Volume 104 (2018), pp. 1-492 (40)
    • Volume 105 (2018), pp. 1-232 (20)
    • Volume 106 (2018), pp. 1-244 (20)
    • Volume 107 (2018), pp. 1-232 (20)
    • Volume 108 (2018), pp. 1-244 (20)
    • Volume 109 (2018), pp. 1-266 (19)
    • Volume 110 (2018), pp. 1-243 (20)
    • Volume 111 (2018), pp. 1-181 (17)
    • Volume 112 (2018), pp. 1-251 (20)
    • Volume 113 (2018), pp. 1-250 (26)
    • Volume 114 (2018), pp. 1-264 (20)
    • Volume 91 (2018), pp. 1-137 (10)
    • Volume 92(1,2) (2018), pp. 1-399 (21)
      • Volume 92, Issue 1 (2018), pp. 1-138 (1)
      • Volume 92, Issue 2 (2018), pp. 139-399 (20)
    • Volume 93 (2018), pp. 1-141 (15)
    • Volume 94(1,2) (2018), pp. 1-332 (21)
      • Volume 94, Issue 1 (2018), pp. 1-71 (1)
      • Volume 94, Issue 2 (2018), pp. 72-332 (20)
    • Volume 95 (2018), pp. 1-272 (20)
    • Volume 96 (2018), pp. 1-250 (20)
    • Volume 97 (2018), pp. 1-284 (20)
    • Volume 98 (2018), pp. 1-232 (20)
    • Volume 99 (2018), pp. 1-229 (19)
  • 2019 (467)
    • Volume 115 (2019), pp. 1-268 (20)
    • Volume 116 (2019), pp. 1-252 (19)
    • Volume 117 (2019), pp. 1-242 (20)
    • Volume 118 (2019), pp. 1-280 (20)
    • Volume 119 (2019), pp. 1-253 (20)
    • Volume 120(1,2) (2019), pp. 1-295 (21)
      • Volume 120, Issue 1 (2019), pp. 1-59 (1)
      • Volume 120, Issue 2 (2019), pp. 60-295 (20)
    • Volume 121 (2019), pp. 1-100 (13)
    • Volume 122 (2019), pp. 1-262 (20)
    • Volume 123 (2019), pp. 1-273 (20)
    • Volume 124(1,2) (2019), pp. 1-333 (21)
      • Volume 124, Issue 1 (2019), pp. 1-85 (1)
      • Volume 124, Issue 2 (2019), pp. 86-1-333 (20)
    • Volume 125 (2019), pp. 1-259 (20)
    • Volume 126 (2019), pp. 1-298 (20)
    • Volume 127(1,2,3) (2019), pp. 1-376 (22)
      • Volume 127, Issue 1 (2019), pp. 1-55 (1)
      • Volume 127, Issue 2 (2019), pp. 56-105 (1)
      • Volume 127, Issue 3 (2019), pp. 106-376 (20)
    • Volume 128(1,2) (2019), pp. 1-432 (21)
      • Volume 128, Issue 1 (2019), pp. 1-70 (1)
      • Volume 128, Issue 2 (2019), pp. 71-432 (20)
    • Volume 129 (2019), pp. 1-267 (20)
    • Volume 130 (2019), pp. 1-308 (20)
    • Volume 131 (2019), pp. 1-288 (20)
    • Volume 132 (2019), pp. 1-312 (24)
    • Volume 133 (2019), pp. 1-274 (20)
    • Volume 134(1,2) (2020), pp. 1-338 (21)
      • Volume 134, Issue 1 (2019), pp. 1-51 (1)
      • Volume 134, Issue 2 (2019), pp. 52-338 (20)
    • Volume 135 (2019), pp. 1-298 (22)
    • Volume 136 (2019), pp. 1-246 (16)
    • Volume 137 (2019), pp. 1-236 (14)
    • Volume 138(1,2) (2019), pp. 1-294 (13)
      • Volume 138, Issue 1 (2019), pp. 1-64 (1)
      • Volume 138, Issue 2 (2019), pp. 65-294 (12)
  • 2020 (179)
    • Volume 139(1,2) (2020), pp. 1-258 (13)
      • Volume 139, Issue 1 (2020), pp. 1-60 (1)
      • Volume 139, Issue 2 (2020), pp. 61-258 (12)
    • Volume 140 (2020), pp. 1-184 (10)
    • Volume 141 (2020), pp. 1-155 (10)
    • Volume 142 (2020), pp. 1-194 (12)
    • Volume 143 (2020), pp. 1-261 (16)
    • Volume 144 (2020), pp. 1-449 (30)
    • Volume 145 (2020), pp. 1-408 (30)
    • Volume 146 (2020), pp. 1-289 (18)
    • Volume 147 (2020), pp. 1-208 (12)
    • Volume 148 (2020), pp. 1-121 (8)
    • Volume 149 (2020), pp. 1-165 (10)
    • Volume 150 (2020), pp. 1-181 (10)
  • 2021 (143)
    • Volume 151 (2021), pp. 1-122 (8)
    • Volume 152 (2021), pp. 1-125 (8)
    • Volume 153(1,2) (2021), pp. 1-215 (13)
      • Volume 153, Issue 1 (2021), pp. 1-42 (1)
      • Volume 153, Issue 2 (2021), pp. 43-215 (12)
    • Volume 154 (2021), pp. 1-174 (10)
    • Volume 155 (2021), pp. 1-154 (10)
    • Volume 156 (2021), pp. 1-191 (12)
    • Volume 157 (2021), pp. 1-188 (10)
    • Volume 158 (2021), pp. 1-298 (16)
    • Volume 159 (2021), pp. 1-223 (14)
    • Volume 160 (2021), pp. 1-337 (20)
    • Volume 161 (2021), pp. 1-156 (10)
    • Volume 162 (2021), pp. 1-178 (12)
  • 2022 (125)
    • Volume 163 (2022), pp. 1-157 (8)
    • Volume 164 (2022), pp. 1-149 (8)
    • Volume 165 (2022), pp. 1-209 (12)
    • Volume 166 (2022), pp. 1-145 (10)
    • Volume 167 (2022), pp. 1-161 (9)
    • Volume 168 (2022), pp. 1-146 (10)
    • Volume 169 (2022), pp. 1-201 (10)
    • Volume 170 (2022), pp. 1-171 (10)
    • Volume 171 (2022), pp. 1-125 (8)
    • Volume 172 (2022), pp. 1-333 (20)
    • Volume 173 (2022), pp. 1-161 (10)
    • Volume 174 (2022), pp. 1-176 (10)
  • 2023 (132)
    • Volume 175 (2023), pp. 1-108 (8)
    • Volume 176 (2023), pp. 1-174 (10)
    • Volume 177 (2023), pp. 1-136 (8)
    • Volume 178 (2023), pp. 1-165 (10)
    • Volume 179 (2023), pp. 1-164 (10)
    • Volume 180 (2023), pp. 1-162 (12)
    • Volume 181 (2023), pp. 1-215 (12)
    • Volume 182 (2023), pp. 1-265 (18)
    • Volume 183 (2023), pp. 1-226 (14)
    • Volume 184 (2023), pp. 1-154 (10)
    • Volume 185 (2023), pp. 1-191 (10)
    • Volume 186 (2023), pp. 1-160 (10)
  • 2024 (183)
    • Volume 187 (2024), pp. 1-156 (10)
    • Volume 188 (2024), pp. 1-197 (12)
    • Volume 189 (2024), pp. 1-310 (20)
    • Volume 190(1,2) (2024), pp. 1-351 (18)
      • Volume 190, Issue 1 (2024), pp. 1-69 (1)
      • Volume 190, Issue 2 (2024), pp. 70-351 (17)
    • Volume 191 (2024), pp. 1-207 (12)
    • Volume 192 (2024), pp. 1-319 (20)
    • Volume 193(1,2) (2024), pp. 1-252 (13)
      • Volume 193, Issue 1 (2024), pp. 1-45 (1)
      • Volume 193, Issue 2 (2024), pp. 46-252 (12)
    • Volume 194 (2024), pp. 1-213 (13)
    • Volume 195 (2024), pp. 1-235 (13)
    • Volume 196 (2024), pp. 1-221 (14)
    • Volume 197 (2024), pp. 1-231 (15)
    • Volume 198 (2024), pp. 1-402 (23)
  • 2025 (169)
    • Volume 199 (2025), pp. 1-253 (16)
    • Volume 200 (2025), pp. 1-223 (14)
    • Volume 201 (2025), pp. 1-245 (12)
    • Volume 202 (2025), pp. 1-317 (17)
    • Volume 203 (2025), pp. 1-438 (15)
    • Volume 204 (2025), pp. 1-353 (19)
    • Volume 205 (2025), pp. 1-272 (16)
    • Volume 206 (2025), pp. 1-172 (13)
    • Volume 207 (2025), pp. 1-173 (12)
    • Volume 208 (2025), pp. 1-174 (11)
    • Volume 209 (2025), pp. 1-184 (12)
    • Volume 210 (2025), pp. 1-158 (12)
  • 2026 (21)
    • Volume 211 (2026), pp. (21)
  • Info (6)
  • News (3)
  • Open access (460)
  • Premium (38)

Last Articles

  • All
  • Premium
  • Open access

An analysis of the thermal capacity in Gravitons

2024-02-18

Exact Analytical Solutions of Nonlinear Differential Equation of a Large Amplitude Simple Pendulum

2024-01-13

Sustainable development as a research area in economy

2024-02-18

Popular Articles

  • About Us

    About Us

    0 shares
    Share 0 Tweet 0
  • Submit your Article

    0 shares
    Share 0 Tweet 0
  • Jeevamrut – A Natural Fertilizer

    0 shares
    Share 0 Tweet 0
  • Abstracting & Indexing

    0 shares
    Share 0 Tweet 0
  • Guide for Authors

    0 shares
    Share 0 Tweet 0

Careers

  • All
  • Careers
No Content Available
World Scientific News

World Scientific News (WSN) is an open-access fully peer-reviewed scholarly journal. The monthly – interdisciplinary journal is directed in the first place to scientists who want to publish their findings, insights, observations, conclusions, etc.

READ MORE

Menu

  • Home
  • About Us
  • Editorial Board
  • Guide for Authors
  • Instruction for Authors
  • Abstracting & Indexing
  • Submit your Article
  • Careers
  • News

Other databases

AGRO
CAS
Google Scholar
Google Scholar Metrics
ICZN
ProQuest
Road Directory
ZooBank

EISSN 2392-2192

Login / Register
Privacy Policy
Cookie Policy

made by fixfix

No Result
View All Result
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News

made by fixfix

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.