ABSTRACT
The rapid growth of aging populations worldwide presents significant challenges for healthcare systems, particularly in managing chronic diseases and ensuring continuous, personalized care. This review explores the potential of health data analytics to enhance the quality and efficiency of elderly healthcare through a conceptual framework. By leveraging data from electronic health records, wearable devices, and patient-reported outcomes, health data analytics can support early detection, personalized treatment, and improved care coordination for older adults. The framework highlights the role of predictive analytics in transforming elderly care by enabling more proactive interventions and better resource allocation. It also emphasizes the need for integration between data-driven technologies and healthcare systems to optimize delivery and outcomes. The paper concludes with recommendations for future research, policy development, and implementation strategies to promote the effective use of health data analytics in elderly care while ensuring privacy, data security, and equitable access.
References
- [1] Abou Malham, S., Breton, M., Touati, N., Maillet, L., Duhoux, A., & Gaboury, I. (2020). Changing nursing practice within primary health care innovations: the case of advanced access model. BMC nursing, 19, 1-17.
- [2] Ajegbile, M. D., Olaboye, J. A., Maha, C. C., & Tamunobarafiri, G. (2024). Integrating business analytics in healthcare: Enhancing patient outcomes through data-driven decision making.
- [3] Anderson, K. E., McGinty, E. E., Presskreischer, R., & Barry, C. L. (2021). Reports of forgone medical care among US adults during the initial phase of the COVID-19 pandemic. JAMA network open, 4(1), e2034882-e2034882.
- [4] Anikwe, C. V., Nweke, H. F., Ikegwu, A. C., Egwuonwu, C. A., Onu, F. U., Alo, U. R., & Teh, Y. W. (2022). Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. Expert Systems with Applications, 202, 117362.
- [5] Bellary, S., Kyrou, I., Brown, J. E., & Bailey, C. J. (2021). Type 2 diabetes mellitus in older adults: clinical considerations and management. Nature Reviews Endocrinology, 17(9), 534-548.
- [6] Cadet, E., Osundare, O. S., Ekpobimi, H. O., Samira, Z., & Wondaferew, Y. (2024). AI-powered threat detection in surveillance systems: A real-time data processing framework.
- [7] Caldeira, C., Gui, X., Reynolds, T. L., Bietz, M., & Chen, Y. (2021). Managing healthcare conflicts when living with multiple chronic conditions. International Journal of Human-Computer Studies, 145, 102494.
- [8] Cheng, X., Yang, Y., Schwebel, D. C., Liu, Z., Li, L., Cheng, P., . . . Hu, G. (2020). Population ageing and mortality during 1990–2017: a global decomposition analysis. PLoS medicine, 17(6), e1003138.
- [9] Collado-Borrell, R., Escudero-Vilaplana, V., Narrillos-Moraza, Á., Villanueva-Bueno, C., Herranz-Alonso, A., & Sanjurjo-Sáez, M. (2022). Patient-reported outcomes and mobile applications. A review of their impact on patients’ health outcomes. Farmacia Hospitalaria, 46(3), 173-181.
- Fulmer, T., Reuben, D. B., Auerbach, J., Fick, D. M., Galambos, C., & Johnson, K. S. (2021). Actualizing Better Health And Health Care For Older Adults: Commentary describes six vital directions to improve the care and quality of life for all older Americans. Health Affairs, 40(2), 219-225.
- Galetsi, P., Katsaliaki, K., & Kumar, S. (2020). Big data analytics in health sector: Theoretical framework, techniques and prospects. International Journal of Information Management, 50, 206-216.
- García-Domínguez, L., Navas, P., Verdugo, M. Á., & Arias, V. B. (2020). Chronic health conditions in aging individuals with intellectual disabilities. International Journal of Environmental Research and Public Health, 17(9), 3126.
- Goyal, P., Kwak, M. J., Al Malouf, C., Kumar, M., Rohant, N., Damluji, A. A., . . . Alexander, K. P. (2022). Geriatric cardiology: coming of age. JACC: Advances, 1(3), 100070.
- Hämäläinen, A., & Hirvonen, H. (2020). Electronic Health Records reshaping the socio-technical practices in Long-Term Care of older persons. Technology in Society, 62, 101316.
- Igwama, G. T., Olaboye, J. A., Cosmos, C., Maha, M. D. A., & Abdul, S. (2024). AI-Powered Predictive Analytics in Chronic Disease Management: Regulatory and Ethical Considerations.
- Jakovljevic, M., Westerman, R., Sharma, T., & Lamnisos, D. (2021). Aging and global health. Handbook of global health, 73-102.
- Jones, K. H., Daniels, H., Squires, E., & Ford, D. V. (2019). Public views on models for accessing genomic and health data for research: mixed methods study. Journal of Medical Internet Research, 21(8), e14384.
- Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 200, 116912.
- Keeney, T., Kumar, A., Erler, K. S., & Karmarkar, A. M. (2022). Making the case for patient-reported outcome measures in big-data rehabilitation research: implications for optimizing patient-centered care. Archives of physical medicine and rehabilitation, 103(5), S140-S145.
- LaMantia, M. A., Boustani, M. A., Jhanji, S., Maina, M., Nazir, A., Messina, F. C., . . . Chodosh, J. (2016). Redesigning acute care for cognitively impaired older adults: Optimizing health care services. Dementia, 15(5), 913-930.
- Liu, C.-j., Chang, P.-S., Griffith, C. F., Hanley, S. I., & Lu, Y. (2022). The nexus of sensory loss, cognitive impairment, and functional decline in older adults: A scoping review. The Gerontologist, 62(8), e457-e467.
- Losorelli, S. D., Vendra, V., Hildrew, D. M., Woodson, E. A., Brenner, M. J., & Sirjani, D. B. (2021). The future of telemedicine: revolutionizing health care or flash in the pan? Otolaryngology–Head and Neck Surgery, 165(2), 239-243.
- Mulukuntla, S., & Pamulaparthyvenkata, S. (2022). Realizing the Potential of AI in Improving Health Outcomes: Strategies for Effective Implementation. ESP Journal of Engineering and Technology Advancements, 2(3), 32-40.
- Muneeswaran, V., Nagaraj, P., Dhannushree, U., Ishwarya Lakshmi, S., Aishwarya, R., & Sunethra, B. (2021). A framework for data analytics-based healthcare systems. Paper presented at the Innovative Data Communication Technologies and Application: Proceedings of ICIDCA 2020.
- Ogugua, J. O., Onwumere, C., Arowoogun, J. O., Anyanwu, E. C., Odilibe, I. P., & Akomolafe, O. (2024). Data science in public health: A review of predictive analytics for disease control in the USA and Africa. World Journal of Advanced Research and Reviews, 21(1), 2753-2769.
- Okoduwa, I. O., Ashiwaju, B. I., Ogugua, J. O., Arowoogun, J. O., Awonuga, K. F., & Anyanwu, E. C. (2024). Reviewing the progress of cancer research in the USA. World Journal of Biology Pharmacy and Health Sciences, 17(2), 068-079.
- Oyeniran, C., Adewusi, A. O., Adeleke, A. G., Akwawa, L. A., & Azubuko, C. F. (2022). Ethical AI: Addressing bias in machine learning models and software applications. Computer Science & IT Research Journal, 3(3), 115-126.
- Pandya, N., Hames, E., & Sandhu, S. (2020). Challenges and strategies for managing diabetes in the elderly in long-term care settings. Diabetes Spectrum, 33(3), 236-245.
- Sawan, M., Reeve, E., Turner, J., Todd, A., Steinman, M. A., Petrovic, M., & Gnjidic, D. (2020). A systems approach to identifying the challenges of implementing deprescribing in older adults across different health-care settings and countries: a narrative review. Expert review of clinical pharmacology, 13(3), 233-245.
- Sehgal, A. (2023). Improving the health of Indigenous peoples: Exploring patient health complexity among urban Indigenous patients in Canada.
- Thomas, A., Valero-Elizondo, J., Khera, R., Warraich, H. J., Reinhardt, S. W., Ali, H.-J., . . . Desai, N. R. (2021). Forgone medical care associated with increased health care costs among the US heart failure population. Heart Failure, 9(10), 710-719.
- Topinková, E., Baeyens, J. P., Michel, J.-P., & Lang, P.-O. (2012). Evidence-based strategies for the optimization of pharmacotherapy in older people. Drugs & aging, 29, 477-494.
- Udegbe, F. C., Ebulue, O. R., Ebulue, C. C., & Ekesiobi, C. S. (2024a). Machine Learning in Drug Discovery: A critical review of applications and challenges. Computer Science & IT Research Journal, 5(4), 892-902.
- Udegbe, F. C., Ebulue, O. R., Ebulue, C. C., & Ekesiobi, C. S. (2024b). The role of artificial intelligence in healthcare: A systematic review of applications and challenges. International Medical Science Research Journal, 4(4), 500-508.
- Vijayan, V., Connolly, J. P., Condell, J., McKelvey, N., & Gardiner, P. (2021). Review of wearable devices and data collection considerations for connected health. Sensors, 21(16), 5589.
- Whitman, A., De Lew, N., Chappel, A., Aysola, V., Zuckerman, R., & Sommers, B. D. (2022). Addressing social determinants of health: Examples of successful evidence-based strategies and current federal efforts. Off Heal Policy, 1, 1-30.
- Wust, K. L., Carayon, P., Werner, N. E., Hoonakker, P. L., Salwei, M. E., Rutkowski, R., . . . Patterson, B. W. (2024). Older adult patients and care partners as knowledge brokers in fragmented health care. Human factors, 66(3), 701-713.
- Youn, S., Geismar, H. N., & Pinedo, M. (2022). Planning and scheduling in healthcare for better care coordination: Current understanding, trending topics, and future opportunities. Production and Operations Management, 31(12), 4407-4423.
- Zare, S., Meidani, Z., Shirdeli, M., & Nabovati, E. (2021). Laboratory test ordering in inpatient hospitals: a systematic review on the effects and features of clinical decision support systems. BMC medical informatics and decision making, 21, 1-20.
Download all article in PDF
![]()



