World Scientific News
EISSN 2392-2192
  • Login
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
SUBMIT ARTICLE
Register
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News
No Result
View All Result
World Scientific News
No Result
View All Result
Home 2024

Analytical Investigations of Thermal-Magnetic Effects on Nonlinear Vibration of Carbon Nanotube in a Multi-layer Elastic Media using Differential Transformation Method

Authors: Rafiu Olalekan Kuku, Nurudeen Adekunle Raji, Gbeminiyi Sobamowo, 192 (2024) 1-21

2024-03-20
Reading Time: 7 mins read
0

ABSTRACT

In this work, the differential transformation approach with after-treatment technique is used to evaluate the nonlinear vibration of a single-walled nanotube operating in a multi-layer elastic media in a thermal-magnetic environment. Hamilton’s principle is used to calculate the equation of motion for the nanotube based on nonlocal elasticity theory and the Euler-Bernoulli beam model. The nonlinear vibration model is then broken down into its spatial and temporal components using the Galerkin decomposition technique. Using the differential transformation approach in conjunction with the cosine after-treatment technique, the resulting temporal ordinary differential equation is solved. The effect of nonlocal, elastic media and thermal-magnetic factors on the dynamic behavior of the nanotube is further examined using the established analytical solution. The analytical analysis demonstrates that the frequency ratio rises as the dimensionless amplitude grows as the frequency ratio increases, as do the values of the dimensionless nonlocal, quadratic, and cubic elastic medium stiffness parameters. However, as the temperature change, magnetic force, Winkler, and Pasternak layer stiffness factors increase, the frequency ratio falls. The study, design, and uses of nanotubes in thermal and magnetic settings are greatly aided by the current work.

 

References

  • Iijima. Helical micro tubes of graphitic carbon. Nature 1991; 354:56–58.
  • Terrones, F. Banhart, N. Grobert, J. Charlier, C. Terrones, H. Ajayan. Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 2002; 89:07550.
  • Nagy, R. Ehlich, L.P. Biro, J. Gjyulai. Y-branching of single walled carbon nanotubes. Appl Phys A Mater 2000; 70:481-3.
  • A. Chernozatonskii. Carbon nanotubes connectors and planar jungle gyms. Appl Phys A 1992; 172:173–6.
  • M. Liew, C.H. Wong, X.Q. He, M.J. Tan, S.A. Meguid, Nanomechanics of single and multiwalled carbon nanotubes, Physical Review, 2004, B69
  • Pantano, M.C. Boyce, D.M. Parks, Mechanics of axial compression of single and multi-wall carbon nanotubes, Journal of Engineering Materials and Technology 126, 2004, 279–284.
  • Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single- and multi-wall carbon nanotubes, Journal of the Mechanics and Physics of Solids 52, 2004, 789–821.
  • Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes, Applied Mechanics Reviews 55, 2002, 495–533.
  • P. Salvetat, J.-M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A69, 1999, 255–260.
  • Sears, R.C. Batra, Buckling of carbon nanotubes under axial compression, Physical Review, 2006, B73.
  • Yoon, C.Q. Ru, A. Mioduchowski, Noncoaxial resonance of an isolated multiwall carbon nanotube, Physical Review, 2002, B66.
  • Wang, H. Cai, Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes, Acta Materialia 54, 2006, 2067–2074.
  • M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration, 2006, 294, 1060–1072.
  • Zhang, G. Liu, X. Han, Transverse vibrations of double-walled carbon nanotubes under compressive axial load, Physics Letters A340, 2005, 258–266.
  • Elishakoff, D. Pentaras, Fundamental natural frequencies of double-walled carbon nanotubes, Journal of Sound and Vibration 322, 2009, 652–664.
  • Buks, B. Yurke, Mass detection with nonlinear nanomechanical resonator, 2006, Physical Review E74.
  • W.C. Postma, I. Kozinsky, A. Husain, M.L. Roukes, Dynamic range of nanotube- and nanowire-based electromechanical systems, 2005, Applied Physics Letters 86.
  • M. Fu, J.W. Hong, X.Q. Wang, Analysis of nonlinear vibration for embedded carbon nanotubes, Journal of Sound and Vibration, 296, 2006, 746–756.
  • Dequesnes, Z. Tang, N.R. Aluru, Static and dynamic analysis of carbon nanotube-based switches, Transactions of the ASME126, 2004, 230–237.
  • M. Ouakad, M.I. Younis, Nonlinear dynamics of electrically actuated carbon nanotube resonators, Journal of Computational and Nonlinear Dynamics, 2010, 5.
  • Zamanian, S.E. Khadem, S.N. Mahmoodi, Analysis of non-linear vibrations of a microresonator under piezoelectric and electrostatic actuations, Journal of Mechanical Engineering Science 223, 2009, 329–344.
  • Belhadj, A. Boukhalfa, S. Belalia. Carbon Nanotube Structure Vibration Based on Non local Elasticity. Journal of Modern Materials, 2016, 3(1), 9-13. doi:http://dx.doi.org/10.21467/jmm.3.1.9-13.
  • M. Abdel-Rahman, A.H. Nayfeh, Secondary resonances of electrically actuated resonant microsensors, Journal of Micromechnics and Microengineering, 2003, 13, 491–501.
  • A. Hawwa, H.M. Al-Qahtani, Nonlinear oscillations of a double-walled carbon nanotube, Computational Materials Science48, 2010, 140–143.
  • Hajnayeb, S.E. Khadem, Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation, Journal of Sound and Vibration 331, 2012, 2443–2456.
  • Y. Xu, X.N. Guo, C.Q. Ru, Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces, Journal of Applied Physics, 2006, 99.
  • Lei, X.W., Natsuki, T., Shi, J.X., Ni, Q.Q., Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B 2012; 43:64-69.
  • A. Ghorbanpour, M.S. Zarei, S. Amir, M.Z. Khoddami. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model, Physica B 2013; 410:188-196
  • Yoon, C.Q. Ru, A. Mioduchowski, Non-coaxial resonance of an isolated multiwall carbon nanotube, Physical Review B 66 (2002) 233402–233414.
  • Yoon, C.Q. Ru, A. Mioduchowski, Vibration of an embedded multiwalled carbon nanotube [J], Composites Science and Technology 63 (2003) 1533–1542.
  • Ansari and M. Hemmatnezhad. Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach. Mathematical and Computer Modelling 53(5-6), 2011: 927-938
  • Ghorbanpour Arani, H. Rabbani, S. Amir, Z. Khoddami Maraghi, M. Mohammadimehr, E. Haghparast. Analysis of Nonlinear Vibrations for Multi-Walled Carbon Nanotubes Embedded in an Elastic Medium. Journal of Solid Mechanics. 3(3) (2011), 258-270.
  • Yoon, C. Q. Ru C, A. Miodochowski. Vibration of an embedded multiwalled carbon nanotubes. Composites Science and Technology 63(2003), 1533-1542.
  • M. Wang, V. B. C. Tan, Y. Y. Zhang. Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. Journal of Sound and Vibration 294(2006), 1060-1072.
  • Aydogdu. Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. International Journal of Mechanical Sciences 50(2008), 837–844.
  • G. Sobamowo. Nonlinear Vibration Analysis of Single-Walled Carbon Nanotube Conveying Fluid in Slip Boundary Conditions Using Variational Iterative Method. Journal of Applied and Computational Mechanics 2(4) (2016), 208-221.
  • G. Sobamowo. Nonlinear Analysis of Flow-induced Vibration in Fluid-conveying Structures using Differential Transformation Method with Cosine-Aftertreatment Technique. Iranian Journal of Mechanical Engineering Transactions of the ISME 18 (1) (2017), 5-42.
  • G. Sobamowo. Nonlinear thermal and flow-induced vibration analysis of fluid-conveying carbon nanotube resting on Winkler and Pasternak foundations. Thermal Science and Engineering Progress. 4 (2017), 133-149.
  • G. Sobamowo, B. Y. Ogunmola and C. A. Osheku. Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method. Journal of Applied and Computational Mechanics 3 (1), 60-79, 2017.
  • AzamArefi & HassanNahvi(2017)Stability analysis of an embedded single-walled carbon nanotube with small initial curvature based on nonlocal theory,Mechanics of Advanced Materials and Structures,24:11,962-970
  • Cigeroglu, H. Samandari. Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method Physica E 64 (2014) 95–105.
  • C. Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves”, Journal of Applied Physics, 54(9) (1983), 4703–4710.
  • C. Eringen. Linear theory of nonlocal elasticity and dispersion of plane waves. Inter- national Journal of Engineering Science, 10(5) (1972), 425–435.
  • C. Eringen. Nonlocal continuum field theories. Springer, New York 2002.
  • C. Eringen and D. G. B. Edelen. On nonlocal elasticity”, International Journal of Engineering Science, 10(3) (1972), 233–248.
  • Yang, A. Chong, D. C. C. Lam and P. Tong, “Couple stress based strain gradient theory for elasticity,” Int. J. Solids Struct., 39(10) (2002), 2731–2743.
  • Park and X.-L. Gao, “Variational formulation of a modified couple stress theory and its application to a simple shear problem,” Z. Angew. Math. Phys., 59(5) (2008), 904–917.
  • Peddieson, G. R. Buchanan and R. P. McNitt, Application of nonlocal continuum models to nanotechnology, Int. J. Eng. Sci., 41(3-5) (2003), 305–312.
  • Lu, H. Lee, C. Lu and P. Zhang, Dynamic properties of flexural beams using a nonlocal elasticity model, J. Appl. Phys., 99(7) (2006), 073510.
  • Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci., 45(2-8) (2007), 2–8, 288–307.
  • Reddy and S. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys., 103(2) (2008), 023511.
  • W. Lim, “On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: Equilibrium, governing equation and static deflection,” Appl. Math. Mech. Engl. Ed., vol. 31(1) (2010), 37–54.
  • W. Lim, “Is a nanorod (or nanotube) with a lower Young’s modulus stiffer? Is not Young’s modulus a stiffness indicator ?,” Sci. China Phys. Mech. Astron, 53(4) (2010), 712–724.
  • Hosseini and O. Rahmani, “Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity,” J. Therm. Stresses, 39(10) (2016), 1252–1267.
  • Tylikowski, “Instability of thermally induced vibrations of carbon nanotubes via nonlocal elasticity,” J. Therm. Stresses, 35(1–3) (2012), 281–289.
  • Ebrahimi and F. Mahmoodi, “Vibration analysis of carbon nanotubes with multiple cracks in thermal environment,” Adv. Nano Res., 6(1) (2018), 57–80.
  • Zhang, X. Liu and G. Liu, Thermal effect on transverse vibrations of double-walled carbon nanotubes, Nanotechnology, 18(44) (2007), 445701.
  • Murmu and S. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci., 46(4), (2009) 854–859.
  • Karli_ci_c, D. Jovanovi_c, P. Kozi_c and M. Caji_c, “Thermal and magnetic effects on the vibration of a cracked nanobeam embedded in an elastic medium,” J. Mech. Mater. Struct., 10(1) (2015), 43–62, 2015.
  • Zarepour and S. A. Hosseini, “A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the Winkler–Pasternak foundations with general elastic boundary conditions,” Smart Mater. Struct, 25(8) (2016), 085005.
  • Ke, Y. Xiang, J. Yang and S. Kitipornchai, “Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory,” Comput. Mater. Sci., 47(2) (2009), 409–417.
  • Togun, “Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation,” Bound Value Probl., vol. 2016 (1), 57.
  • Ansari, R. Gholami and M. Darabi, “Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise boundary conditions,” Acta Mech., 223(12) (2012), 2523–2536.
  • S. Ma’en. Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation. Microsyst. Technol., 23(8) (2017), 3319–3330.
  • S. Ma’en, “Superharmonic resonance analysis of nonlocal nano beam subjected to axial thermal and magnetic forces and resting on a nonlinear elastic foundation,” Microsyst. Technol., 23(8) (2017), 3319–3330.
  • Fallah and M. Aghdam, “Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation,” Eur J. Mech. A/Solids, 30(4) (2011), 571–583, 2011.
  • Fallah and M. Aghdam, “Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation,” Compos. B Eng., 43(3) (2012), 1523–1530.
  • Murmu and S. Pradhan, “Thermal effects on the stability of embedded carbon nanotubes,” Comput. Mater. Sci., 47(3) (2010), 721–726.
  • Simsek. Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory. Compos. B: Eng., 56 (2014), 621–628.
  • Murmu, S.C. Pradhan, Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory, Comput. Mater. Sci. 46 (2009) 854-859.
  • S. Abdullah, S. Hosseini-Hashemi, N. A. Hussein and R. Nazemnezhad. Thermal stress and magnetic effects on nonlinear vibration of nanobeams embedded in nonlinear elastic medium. Journal of Thermal Stresses. 43(10) (2020), 1316-1332.
  • Moradi, T. Hayat and A. Alsaedi, Convective-radiative thermal analysis of triangular fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management 77 (2014) 70–77

Download all article in PDF

WSN 192 (2024) 1-21


 

ADVERTISEMENT
Tags: Differential Transformation MethodElastic mediaMagnetic fieldNonlinear vibrationNonlocal elasticity theoryTemperature effect
ShareTweetPin
Next Post

Numerical Analysis and Simulations of Thermo-Fluidic Flow of Johnson-Segalman Fluid in a Circular Pipe

Change Management in Insurance Sector – with special reference to Life Insurance Corporation of India

View free articles

  • Open access

View Articles

  • 2013 (5)
    • Volume 1 (2013), pp. 1-14 (2)
    • Volume 2 (2013), pp. 1-29 (3)
  • 2014 (13)
    • Volume 3 (2014), pp. 1-21 (3)
    • Volume 4 (2014), pp. 1-16 (2)
    • Volume 5 (2014), pp. 1-36 (4)
    • Volume 6 (2014), pp. 1-23 (3)
  • 2015 (109)
    • Volume 10 (2015), pp. 1-100 (5)
    • Volume 11 (2015), pp. 1-96 (6)
    • Volume 12 (2015), pp. 1-76 (6)
    • Volume 13 (2015), pp. 1-130 (7)
    • Volume 14 (2015), pp. 1-55 (1)
    • Volume 15 (2015), pp. 1-25 (2)
    • Volume 16 (2015), pp. 1-158 (9)
    • Volume 17 (2015), pp. 1-63 (1)
    • Volume 18 (2015), pp. 1-127 (8)
    • Volume 19 (2015), pp. 1-111 (7)
    • Volume 20 (2015), pp. 1-336 (1)
    • Volume 21 (2015), pp. 1-89 (7)
    • Volume 22 (2015), pp. 1-119 (8)
    • Volume 23 (2015), pp. 1-127 (10)
    • Volume 24 (2015), pp. 1-87 (6)
    • Volume 7 (2015), pp. 1-237 (9)
    • Volume 8 (2015), pp. 1-203 (7)
    • Volume 9 (2015), pp. 1-160 (9)
  • 2016 (517)
    • Volume 25 (2016), pp. 1-16 (2)
    • Volume 26 (2016), pp. 1-19 (2)
    • Volume 27 (2016), pp. 1-16 (2)
    • Volume 28 (2016), pp. 1-100 (7)
    • Volume 29 (2016), pp. 1-95 (6)
    • Volume 30 (2016), pp. 1-142 (10)
    • Volume 31 (2016), pp. 1-124 (8)
    • Volume 32 (2016), pp. 1-81 (9)
    • Volume 33 (2016), pp. 1-121 (8)
    • Volume 34 (2016), pp. 1-145 (10)
    • Volume 35 (2016), pp. 1-133 (10)
    • Volume 36 (2016), pp. 1-152 (10)
    • Volume 37 (2016), pp. 1-303 (18)
    • Volume 38 (2016), pp. 1-59 (1)
    • Volume 39 (2016), pp. 1-30 (2)
    • Volume 40 (2016), pp. 1-299 (20)
    • Volume 41 (2016), pp. 1-287 (36)
    • Volume 42 (2016), pp. 1-316 (21)
    • Volume 43(1,2,3) (2016), pp. 1-157 (3)
      • Volume 43, Issue 1 (2016), pp. 1-55 (1)
      • Volume 43, Issue 2 (2016), pp. 56-103 (1)
      • Volume 43, Issue 3 (2016), pp. 104-157 (1)
    • Volume 44 (2016), pp. 1-301 (20)
    • Volume 45(1,2) (2016), pp. 1-383 (21)
      • Volume 45, Issue 1 (2016), pp. 1-62 (1)
      • Volume 45, Issue 2 (2016), pp. 63-383 (20)
    • Volume 46 (2016), pp. 1-286 (20)
    • Volume 47(1,2) (2016), pp. 1-350 (21)
      • Volume 47, Issue 1 (2016), pp. 1-61 (1)
      • Volume 47, Issue 2 (2016), pp. 62-350 (20)
    • Volume 48 (2016), pp. 1-163 (17)
    • Volume 49(1,2) (2016), pp. 1-404 (21)
      • Volume 49, Issue 1 (2016), pp. 1-58 (1)
      • Volume 49, Issue 2 (2016), pp. 59-404 (20)
    • Volume 50 (2016), pp. 1-316 (20)
    • Volume 51 (2016), pp. 1-71 (7)
    • Volume 52 (2016), pp. 1-275 (20)
    • Volume 53(1,2,3) (2016), pp. 1-429 (22)
      • Volume 53, Issue 1 (2016), pp. 1-66 (1)
      • Volume 53, Issue 2 (2016), pp. 67-109 (1)
      • Volume 53, Issue 3 (2016), pp. 110-429 (20)
    • Volume 54 (2016), pp. 1-299 (20)
    • Volume 55 (2016), pp. 1-288 (20)
    • Volume 56 (2015), pp. 1-266 (20)
    • Volume 57 (2016), pp. 1-570 (53)
    • Volume 58 (2016), pp. 1-161 (10)
    • Volume 59 (2016), pp. 1-128 (10)
    • Volume 60 (2016), pp. 1-120 (10)
  • 2017 (481)
    • Volume 61(1,2) (2017), pp. 1-194 (11)
      • Volume 61, Issue 1 (2017), pp. 1-51 (1)
      • Volume 61, Issue 2 (2017), pp. 52-194 (10)
    • Volume 62 (2017), pp. 1-146 (10)
    • Volume 63 (2017), pp. 1-240 (1)
    • Volume 64 (2017), pp. 1-140 (10)
    • Volume 65 (2017), pp. 1-175 (10)
    • Volume 66 (2017), pp. 1-300 (20)
    • Volume 67(1,2,) (2017), pp. 1-389 (21)
      • Volume 67, Issue 1 (2017), pp. 1-67 (1)
      • Volume 67, Issue 2 (2017), pp. 68-389 (20)
    • Volume 68 (2017), pp. 1-141 (1)
    • Volume 69 (2017), pp. 1-253 (20)
    • Volume 70(1,2) (2017), pp. 1-321 (21)
      • Volume 70, Issue 1 (2017), pp. 1-50 (1)
      • Volume 70, Issue 2 (2017), pp. 51-321 (20)
    • Volume 71 (2017), pp. 1-219 (18)
    • Volume 72 (2017), pp. 1-478 (46)
    • Volume 73 (2017), pp. 1-133 (15)
    • Volume 74 (2017), pp. 1-287 (20)
    • Volume 75 (2017), pp. 1-111 (12)
    • Volume 76 (2017), pp. 1-199 (20)
    • Volume 77(1,2) (2017), pp. 1-380 (21)
      • Volume 77, Issue 1 (2017), pp. 1-102 (1)
      • Volume 77, Issue 2 (2017), pp. 103-380 (20)
    • Volume 78 (2017), pp. 1-230 (24)
    • Volume 79 (2017), pp. 1-89 (1)
    • Volume 80 (2017), pp. 1-323 (20)
    • Volume 81(1,2) (2017), pp. 1-312 (21)
      • Volume 81, Issue 1 (2017), pp. 1-47 (1)
      • Volume 81, Issue 2 (2017), pp. 48-312 (20)
    • Volume 82 (2017), pp. 1-90 (1)
    • Volume 83 (2017), pp. 1-239 (20)
    • Volume 84 (2017), pp. 1-92 (1)
    • Volume 85 (2017), pp. 1-73 (10)
    • Volume 86(1,2,3) (2017), pp. 1-370 (22)
      • Volume 86, Issue 1 (2017), pp. 1-58 (1)
      • Volume 86, Issue 2 (2017), pp. 59-122 (1)
      • Volume 86, Issue 3 (2017), pp. 123-370 (20)
    • Volume 87 (2017), pp. 1-255 (20)
    • Volume 88(1,2) (2017), pp. 1-226 (11)
      • Volume 88, Issue 1 (2017), pp. 1-57 (1)
      • Volume 88, Issue 2 (2017), pp. 58-226 (10)
    • Volume 89 (2017), pp. 1-321 (33)
    • Volume 90 (2017), pp. 1-270 (20)
  • 2018 (486)
    • Volume 100 (2018), pp. 1-253 (20)
    • Volume 101 (2018), pp. 1-252 (20)
    • Volume 102 (2018), pp. 1-223 (20)
    • Volume 103 (2018), pp. 1-249 (18)
    • Volume 104 (2018), pp. 1-492 (40)
    • Volume 105 (2018), pp. 1-232 (20)
    • Volume 106 (2018), pp. 1-244 (20)
    • Volume 107 (2018), pp. 1-232 (20)
    • Volume 108 (2018), pp. 1-244 (20)
    • Volume 109 (2018), pp. 1-266 (19)
    • Volume 110 (2018), pp. 1-243 (20)
    • Volume 111 (2018), pp. 1-181 (17)
    • Volume 112 (2018), pp. 1-251 (20)
    • Volume 113 (2018), pp. 1-250 (26)
    • Volume 114 (2018), pp. 1-264 (20)
    • Volume 91 (2018), pp. 1-137 (10)
    • Volume 92(1,2) (2018), pp. 1-399 (21)
      • Volume 92, Issue 1 (2018), pp. 1-138 (1)
      • Volume 92, Issue 2 (2018), pp. 139-399 (20)
    • Volume 93 (2018), pp. 1-141 (15)
    • Volume 94(1,2) (2018), pp. 1-332 (21)
      • Volume 94, Issue 1 (2018), pp. 1-71 (1)
      • Volume 94, Issue 2 (2018), pp. 72-332 (20)
    • Volume 95 (2018), pp. 1-272 (20)
    • Volume 96 (2018), pp. 1-250 (20)
    • Volume 97 (2018), pp. 1-284 (20)
    • Volume 98 (2018), pp. 1-232 (20)
    • Volume 99 (2018), pp. 1-229 (19)
  • 2019 (467)
    • Volume 115 (2019), pp. 1-268 (20)
    • Volume 116 (2019), pp. 1-252 (19)
    • Volume 117 (2019), pp. 1-242 (20)
    • Volume 118 (2019), pp. 1-280 (20)
    • Volume 119 (2019), pp. 1-253 (20)
    • Volume 120(1,2) (2019), pp. 1-295 (21)
      • Volume 120, Issue 1 (2019), pp. 1-59 (1)
      • Volume 120, Issue 2 (2019), pp. 60-295 (20)
    • Volume 121 (2019), pp. 1-100 (13)
    • Volume 122 (2019), pp. 1-262 (20)
    • Volume 123 (2019), pp. 1-273 (20)
    • Volume 124(1,2) (2019), pp. 1-333 (21)
      • Volume 124, Issue 1 (2019), pp. 1-85 (1)
      • Volume 124, Issue 2 (2019), pp. 86-1-333 (20)
    • Volume 125 (2019), pp. 1-259 (20)
    • Volume 126 (2019), pp. 1-298 (20)
    • Volume 127(1,2,3) (2019), pp. 1-376 (22)
      • Volume 127, Issue 1 (2019), pp. 1-55 (1)
      • Volume 127, Issue 2 (2019), pp. 56-105 (1)
      • Volume 127, Issue 3 (2019), pp. 106-376 (20)
    • Volume 128(1,2) (2019), pp. 1-432 (21)
      • Volume 128, Issue 1 (2019), pp. 1-70 (1)
      • Volume 128, Issue 2 (2019), pp. 71-432 (20)
    • Volume 129 (2019), pp. 1-267 (20)
    • Volume 130 (2019), pp. 1-308 (20)
    • Volume 131 (2019), pp. 1-288 (20)
    • Volume 132 (2019), pp. 1-312 (24)
    • Volume 133 (2019), pp. 1-274 (20)
    • Volume 134(1,2) (2020), pp. 1-338 (21)
      • Volume 134, Issue 1 (2019), pp. 1-51 (1)
      • Volume 134, Issue 2 (2019), pp. 52-338 (20)
    • Volume 135 (2019), pp. 1-298 (22)
    • Volume 136 (2019), pp. 1-246 (16)
    • Volume 137 (2019), pp. 1-236 (14)
    • Volume 138(1,2) (2019), pp. 1-294 (13)
      • Volume 138, Issue 1 (2019), pp. 1-64 (1)
      • Volume 138, Issue 2 (2019), pp. 65-294 (12)
  • 2020 (179)
    • Volume 139(1,2) (2020), pp. 1-258 (13)
      • Volume 139, Issue 1 (2020), pp. 1-60 (1)
      • Volume 139, Issue 2 (2020), pp. 61-258 (12)
    • Volume 140 (2020), pp. 1-184 (10)
    • Volume 141 (2020), pp. 1-155 (10)
    • Volume 142 (2020), pp. 1-194 (12)
    • Volume 143 (2020), pp. 1-261 (16)
    • Volume 144 (2020), pp. 1-449 (30)
    • Volume 145 (2020), pp. 1-408 (30)
    • Volume 146 (2020), pp. 1-289 (18)
    • Volume 147 (2020), pp. 1-208 (12)
    • Volume 148 (2020), pp. 1-121 (8)
    • Volume 149 (2020), pp. 1-165 (10)
    • Volume 150 (2020), pp. 1-181 (10)
  • 2021 (143)
    • Volume 151 (2021), pp. 1-122 (8)
    • Volume 152 (2021), pp. 1-125 (8)
    • Volume 153(1,2) (2021), pp. 1-215 (13)
      • Volume 153, Issue 1 (2021), pp. 1-42 (1)
      • Volume 153, Issue 2 (2021), pp. 43-215 (12)
    • Volume 154 (2021), pp. 1-174 (10)
    • Volume 155 (2021), pp. 1-154 (10)
    • Volume 156 (2021), pp. 1-191 (12)
    • Volume 157 (2021), pp. 1-188 (10)
    • Volume 158 (2021), pp. 1-298 (16)
    • Volume 159 (2021), pp. 1-223 (14)
    • Volume 160 (2021), pp. 1-337 (20)
    • Volume 161 (2021), pp. 1-156 (10)
    • Volume 162 (2021), pp. 1-178 (12)
  • 2022 (125)
    • Volume 163 (2022), pp. 1-157 (8)
    • Volume 164 (2022), pp. 1-149 (8)
    • Volume 165 (2022), pp. 1-209 (12)
    • Volume 166 (2022), pp. 1-145 (10)
    • Volume 167 (2022), pp. 1-161 (9)
    • Volume 168 (2022), pp. 1-146 (10)
    • Volume 169 (2022), pp. 1-201 (10)
    • Volume 170 (2022), pp. 1-171 (10)
    • Volume 171 (2022), pp. 1-125 (8)
    • Volume 172 (2022), pp. 1-333 (20)
    • Volume 173 (2022), pp. 1-161 (10)
    • Volume 174 (2022), pp. 1-176 (10)
  • 2023 (132)
    • Volume 175 (2023), pp. 1-108 (8)
    • Volume 176 (2023), pp. 1-174 (10)
    • Volume 177 (2023), pp. 1-136 (8)
    • Volume 178 (2023), pp. 1-165 (10)
    • Volume 179 (2023), pp. 1-164 (10)
    • Volume 180 (2023), pp. 1-162 (12)
    • Volume 181 (2023), pp. 1-215 (12)
    • Volume 182 (2023), pp. 1-265 (18)
    • Volume 183 (2023), pp. 1-226 (14)
    • Volume 184 (2023), pp. 1-154 (10)
    • Volume 185 (2023), pp. 1-191 (10)
    • Volume 186 (2023), pp. 1-160 (10)
  • 2024 (183)
    • Volume 187 (2024), pp. 1-156 (10)
    • Volume 188 (2024), pp. 1-197 (12)
    • Volume 189 (2024), pp. 1-310 (20)
    • Volume 190(1,2) (2024), pp. 1-351 (18)
      • Volume 190, Issue 1 (2024), pp. 1-69 (1)
      • Volume 190, Issue 2 (2024), pp. 70-351 (17)
    • Volume 191 (2024), pp. 1-207 (12)
    • Volume 192 (2024), pp. 1-319 (20)
    • Volume 193(1,2) (2024), pp. 1-252 (13)
      • Volume 193, Issue 1 (2024), pp. 1-45 (1)
      • Volume 193, Issue 2 (2024), pp. 46-252 (12)
    • Volume 194 (2024), pp. 1-213 (13)
    • Volume 195 (2024), pp. 1-235 (13)
    • Volume 196 (2024), pp. 1-221 (14)
    • Volume 197 (2024), pp. 1-231 (15)
    • Volume 198 (2024), pp. 1-402 (23)
  • 2025 (169)
    • Volume 199 (2025), pp. 1-253 (16)
    • Volume 200 (2025), pp. 1-223 (14)
    • Volume 201 (2025), pp. 1-245 (12)
    • Volume 202 (2025), pp. 1-317 (17)
    • Volume 203 (2025), pp. 1-438 (15)
    • Volume 204 (2025), pp. 1-353 (19)
    • Volume 205 (2025), pp. 1-272 (16)
    • Volume 206 (2025), pp. 1-172 (13)
    • Volume 207 (2025), pp. 1-173 (12)
    • Volume 208 (2025), pp. 1-174 (11)
    • Volume 209 (2025), pp. 1-184 (12)
    • Volume 210 (2025), pp. 1-158 (12)
  • 2026 (21)
    • Volume 211 (2026), pp. (21)
  • Info (6)
  • News (3)
  • Open access (460)
  • Premium (38)

Last Articles

  • All
  • Premium
  • Open access

Chemically Modified Groundnut Shell Adsorbent: A Mean To Removing Peroxide (PO), Free Fatty Acid (FFA), and Acid (ACD) from Used Vegetable Oil

2025-03-11

Synthesis, characterization and biological property of 3-(5-bromothiophen-2-yl)-6-phenyl-1,7a-dihydro-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives

2024-01-25

Self-esteem: An Evolutionary-Developmental Approach

2024-02-13

Popular Articles

  • About Us

    About Us

    0 shares
    Share 0 Tweet 0
  • Submit your Article

    0 shares
    Share 0 Tweet 0
  • Jeevamrut – A Natural Fertilizer

    0 shares
    Share 0 Tweet 0
  • Abstracting & Indexing

    0 shares
    Share 0 Tweet 0
  • Guide for Authors

    0 shares
    Share 0 Tweet 0

Careers

  • All
  • Careers
No Content Available
World Scientific News

World Scientific News (WSN) is an open-access fully peer-reviewed scholarly journal. The monthly – interdisciplinary journal is directed in the first place to scientists who want to publish their findings, insights, observations, conclusions, etc.

READ MORE

Menu

  • Home
  • About Us
  • Editorial Board
  • Guide for Authors
  • Instruction for Authors
  • Abstracting & Indexing
  • Submit your Article
  • Careers
  • News

Other databases

AGRO
CAS
Google Scholar
Google Scholar Metrics
ICZN
ProQuest
Road Directory
ZooBank

EISSN 2392-2192

Login / Register
Privacy Policy
Cookie Policy

made by fixfix

No Result
View All Result
  • Home
  • About
    • About Us
    • Editorial Board
    • Guide for Authors
    • Abstracting & Indexing
    • Instruction for Authors
    • Submit your Article
  • View Articles
    • 2026
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Careers
  • News

made by fixfix

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.