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ABSTRACT 

 Solar panel faults can significantly reduce energy output and reliability in renewable energy systems. Traditional 

fault detection methods often rely on manual inspection or rule-based systems, which struggle with accuracy and 

scalability. This paper introduces a deep learning-based fault diagnosis system designed to automatically detect and 

classify solar panel anomalies using infrared (IR) images. The proposed StackNet architecture builds upon the ResNet-

18 backbone, with targeted modifications to enhance feature extraction efficiency while maintaining computational 

lightness. The model begins with a large-kernel convolutional layer for effective low-level feature capture, followed by 

normalization, activation, and pooling to reduce spatial resolution early and accelerate training. 
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  StackNet strikes a balance between architectural depth and training efficiency, offering strong representational 

capacity with minimal increase in complexity. This makes it particularly suited for solar anomaly detection tasks where 

both performance and computational cost are critical. 

 The model was trained and evaluated on IR images for both binary (fault and no-fault) and multi-class (six fault 

types) classification. Experimental results demonstrate high diagnostic performance on both binary and multi-

classification tasks. These outcomes validate the model’s robustness across different imaging modalities and fault 

scenarios. This bridges the gap between research and field application, offering practical deployment potential for solar 

maintenance. In summary, this paper highlights the effectiveness of combining deep learning and attention mechanisms 

for reliable solar panel fault detection, contributing to more intelligent and automated renewable energy management.

  

Keywords: Solar Panel Fault Detection, Deep Learning, Infrared Imaging, Electroluminescence Imaging, Renewable 

Energy, Attention Mechanism, ResNet-Inception, Image Classification 

 

1. INTRODUCTION 

 The consumption of energy is rising on a daily basis [1], so finding efficient ways to produce energy 

is becoming increasingly important. Compared with fossil fuels, renewable energy has lower greenhouse gas 

emissions, and the widespread adoption of it will help reduce environmental pollution [1]. As a renewable 

resource, solar energy does not cause global warming or damage ecosystems, thus helping to maintain 

ecological balance [1]. Solar panels use semiconductor materials and advanced technologies to convert solar 

radiation into electrical energy [1]. According to the National Renewable Energy Laboratory (NREL) [2], 

solar panels have a CO2 emission rate of about 45 to 50 grams per kilowatt-hour, whereas coal-fired power 

plants emit 900 to 1,000 grams of CO2. Therefore, promoting solar panels is considered an effective way to 

reduce both carbon dioxide emissions and environmental pollution [3]. 

 Although solar panels are environmentally friendly and efficient, their performance is highly 

susceptible to various external and internal factors. Common faults, such as cracks, vegetation growth, soiling, 

diode failures, hot spots, pollution, fractures, and delamination [4]. These faults can seriously reduce energy 

conversion efficiency and shorten the lifespan of solar panels [5], impacting the stability and reliability of the 

entire solar energy system. For example, hot spots can cause localized overheating, while cracks and 

delamination may lead to permanent damage, reducing the overall output of the photovoltaic array. So timely 

identification and rectification of these issues are essential to maintain the consistent performance of solar 

panels and to prevent system-wide failures [6].  

 Currently, solar panel anomaly detection and classification primarily relies on visual inspection and 

electrical testing. Visual inspection is commonly conducted using infrared thermography (IRT) and 

electroluminescence (EL) imaging [7]. IRT detects thermal emissions from solar panel, identifying 

temperature anomalies that indicate potential faults such as hot spots and cell cracks [8]. In contrast, EL 

imaging captures the light emitted by solar panel under external voltage excitation, allowing visualization of 

internal electrical activity and enabling the detection of delamination and microcracks [9]. Electrical testing 

analyzes the electrical performance of solar panels to identify faults that affect efficiency and power output 

[10].  
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 Among the commonly used methods, current-voltage (I-V) curve analysis measures the voltage and 

current characteristics of the panel under varying loads, enabling the detection of power degradation, short 

circuits, and electrical mismatches [10]. Despite these methods boosting detection efficiency, they still have 

limitations, including low accuracy, high costs, restricted detection range, and dependence on environmental 

conditions. 

 In recent years, the application of CNN(Convolutional Neural Network) within deep learning has 

significantly advanced fault classification [4]. CNNs can automatically extract features from complex data 

and adapt to various fault types and data distributions. In solar panel anomaly classification, CNNs are 

particularly effective in processing infrared and electroluminescence (EL) images [10], [11]. By learning from 

large-scale image datasets, CNN-based approaches provide an efficient and automated solution for fault 

classification, reduce manual intervention, and adapt to varying environmental conditions. Hence, leveraging 

CNNs for solar panel fault classification can improve the reliability and efficiency of solar systems, supporting 

intelligent operation and maintenance. 

 

 

 

Figure 1. Factors of Solar Panel Anomaly. 

 

            This research integrates infrared (IR) and electroluminescence (EL) imaging technology with deep 

learning models to achieve automated fault classification, enhancing detection efficiency and accuracy, and 

the overview is seen in Figure 2. The SARNet model will be trained on two large-scale datasets to accurately 

identify solar panel conditions. An attention mechanism will be incorporated to improve the model’s focus on 

critical regions, enhancing fault detection precision. Additionally, Grad-CAM (Gradient-weighted Class 

Activation Mapping) will be utilized to visualize the model’s decision-making process, generating heatmaps 

to highlight key fault areas and improve interpretability and a graphical user interface (GUI) for real-time 

analysis. 
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Figure 2. Research Overview. 

 

2. LITERATURE REVIEW 

 This chapter provides a comprehensive review of various methods used for solar panel fault 

classification, highlighting the evolution from traditional techniques to more advanced machine learning and 

deep learning approaches. 

2.1. Solar Panel Anomaly Classification Using Traditional Methods 

 The traditional methods for classifying anomalies in solar panels mainly include two categories: visual 

and thermal imaging methods (VTMs) and electrical detection methods (EBMs) [10]. Like Figure 3, each 

approach leverages distinct principles and tools to identify and classify faults, offering complementary 

strengths and addressing different diagnostic needs. 

 VTMs detect surface and internal faults in solar panels [11]. Infrared imaging identifies heat anomalies 

from electrical issues without extra sensors [12], offering a cost-effective solution for systems of all sizes. 

Visual inspection detects surface defects through direct observation, while electroluminescence imaging uses 

injected current to reveal internal issues like cracks and poor contacts with high accuracy [10]. These methods, 

though equipment-dependent, are essential for reliable fault detection. 
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Figure 3. Categories of solar panel anomaly classification traditional methods. 

 

EBMs analyze current and voltage characteristics to identify faults. I-V Curve Analysis detects issues like 

short circuits and shading by comparing normal and faulty curves [10]. Power Loss Analysis (PLA) locates 

problems such as hot spots and degradation by measuring output deviation. Current and Voltage Measurement 

identifies wiring faults or imbalances through deviations from expected electrical values [13]. 

2.2. Solar Panel Anomaly Classification Using Machine Learning Technologies 

 Various machine learning algorithms, such as k-nearest neighbor (k-NN), decision tree (DT), random 

forest (RF), and support vector machine (SVM), have been widely applied in anomaly detection and 

classification of solar panel systems [10].  

 The k-nearest neighbor (k-NN) algorithm is a simple yet effective method for detecting anomalies in 

solar panels, such as open-circuit, line-to-line, and partial shading issues. For instance, Madeti and Singh [14] 

used k-NN with experimental data and temperature variables, achieving 98.70% accuracy. Despite its 

simplicity, KNN’s performance can be further improved by integrating fuzzy logic, enhancing adaptability in 

real-world conditions. The decision tree (DT) algorithm, known for simplicity and interpretability, is also 

commonly used for anomaly detection [10]. Madani et al. [15], combined DT with AdaBoost, enhancing its 

accuracy and robustness in dynamic environments.  

 Unlike the deterministic nature of decision trees (DT), random forests (RF) use an ensemble learning 

approach, improving prediction accuracy and robustness [10]. Dhibi et al. [16] proposed reduced-kernel RF 

have improved feature extraction and classification efficiency, showcasing the potential of RF in handling 

large-scale solar panel systems with diverse operating conditions.  

 Among these algorithms, support vector machine (SVM) is particularly is known for its strong 

classification in anomaly detection [10]. It handles high-dimensional data and separates classes clearly. Yi 

and Etemadi [17] combined multi-resolution signal decomposition (MSD) with SVM for line-to-line anomaly 

detection, achieving high accuracy.   
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2.3. Solar Panel Anomaly Classification Using Deep Learning Technologies 

2.3.1. CNN Methods 

          Convolutional Neural Networks (CNNs) have become a dominant approach for solar panel anomaly 

classification, particularly due to their ability to automatically extract features from image data. This capability 

is crucial for monitoring large-scale solar panel systems, where datasets often include diverse modalities such 

as infrared (IR), electroluminescence (EL), and visible light images [10]. The adaptability of CNNs makes 

them effective for both binary and multi-class classification tasks. 

 For example, Alves et al. [18] used a CNN model with undersampling and oversampling to handle 

class imbalance, achieving 92.5% accuracy in binary classification and accuracies of 66.43% and 78.85% for 

datasets with 12 and 8 fault types. Espinosa et al. [19] applied CNNs for semantic segmentation and 

classification from RGB images, attaining 75% accuracy for binary fault detection and 70% for four fault 

categories. 

 As CNN-based models advanced, Le et al. [19] further enhanced CNN-based approaches by 

incorporating a deep neural network with a residual network structure and ensemble techniques, achieving 

94% accuracy for binary classification and 86% for classifying 12 anomaly types. 

 In a significant development, Korkmaz and Acikgoz [20] used a multi-scale CNN with transfer 

learning on thermographic images, achieving 93.51% accuracy for 11 anomaly types. Deitsch et al. [23] 

applied an end-to-end deep CNN to classify normal and abnormal categories in 1,968 EL extracted cells, 

reaching 88.42% accuracy. Otamendi et al. [20]employed a CNN for cell-level anomaly detection, attaining 

84% accuracy in distinguishing defective modules. 

These advancements show that CNNs are constantly improving, enhancing the accuracy and robustness of 

solar panel fault classification for various anomalies. 

2.3.2. Attention Mechanism 

 Attention mechanisms have been increasingly utilized in solar panel anomaly classification due to their 

ability to focus on salient features and enhance representation learning [21]. Liu et al. [22] used attention-

based masking to remove non-salient regions and focus on relevant features. Bozorgtabar and Mahapatra [27] 

applied attention-based learnable masks to detect and localize anomalies. Sim et al. [28] used attention 

masking to eliminate unnecessary background information, improving generalization. Park et al. [29] utilized 

attention masking for anomaly detection and inpainting techniques for defect identification. Overall, these 

studies show attention mechanisms boost solar panel anomaly detection model accuracy and reliability. 

2.3.3. Hybrid Attention-CNN Methods 

 The integration of attention mechanisms with CNN methods has proven highly effective in solar panel 

anomaly classification, offering improvements in defect detection. By leveraging attention mechanisms, 

models can focus on critical defect regions, enhancing the detection of fine-grained anomalies that traditional 

methods often miss. For instance, Zhang et al. [23] combined CNN with the CBAM attention module, 

achieving 95.22% accuracy across complex defect categories. Lee et al. [21] proposed a lightweight solution 

with pre-trained attention mechanisms.  
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 Their dual-masking technique (AGDM) enhanced performance by efficiently extracting defect 

information, achieving an accuracy of 84.6% in binary classification (between normal and abnormal). Royal 

et al. [32] achieved an AUROC score of 0.97 in EL image anomaly detection, validating the potential of 

combining attention mechanisms with CNNs. 

 These methods collectively demonstrate that hybrid attention-CNN approaches excel in handling 

complex and diverse defect scenarios, offering high accuracy, efficiency, and adaptability for solar panel 

anomaly classification. 

3. METHODOLOGY 

 This chapter outlines the experimental design for evaluating the proposed models. It introduces the 

datasets used, the architecture of the proposed CNN model, and the data preprocessing procedures. The 

training setup, including hyperparameter configuration and training strategies, is then described. Finally, the 

evaluation section summarizes the metrics used to assess model performance across different classification 

tasks. 

3.1. Dataset 

 This study uses Infrared Solar Modules to support model development. During the training process, 

the Infrared Solar Modules dataset [29] as shown in and Figure 4 contains images captured with infrared 

cameras, focusing on detecting faults such as hot spots, cracks, and material degradation. The images have an 

initial resolution of 24 * 40 pixels. This dataset includes 12 classes: 11 anomaly classes and one class labeled 

‘No-Anomaly,’ representing the absence of faults. This enables effective classification and detection of 

various solar panel issues, improving the efficiency and longevity of photovoltaic systems. 
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Figure 4. Few sample categories in the Infrared Solar Modules Dataset. 

3.2. Data Preprocessing 

 Comprehensive preprocessing was conducted to ensure the datasets were suitable for model 

development. Key steps included data splitting, class balancing, resizing, and augmentation, which together 

produced standardized and diverse inputs, supporting both robust training and enhanced generalization across 

classification tasks. 

3.2.1. Data Split 

 For this research, in Infrared Solar Modules dataset is divided into three subsets: training, validation, 

and test sets. As shown in Figure 5 and Figure 6, the training set comprises 70% of the data, while the 

validation and test set each account for 15%. The dataset is processed in both binary and multi-class formats. 

In binary classification, the task is to distinguish between ‘Anomaly’ and ‘No-Anomaly’. In the multi-class 

classification task, instead of using all 12 original categories, a subset of 6 representative classes was selected 

to address the issue of data imbalance. These include Vegetation, Shadowing, Cell, Diode, Cracking, and 

Offline-Module. This selection maintains defect diversity while ensuring a more balanced class distribution 

for effective model training. This structured split ensures effective training and evaluation for both 

classification tasks. 
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Figure 5. Data separation of dataset 1 (Binary Classification). 

 

 

Figure 6. Data separation of dataset 1 (6-Class Classification). 

 

3.2.2. Data Balancing 

 In this study, for the binary classification task of dataset, since the number of samples shows in Figure 

7 for the anomaly class and the normal class are already balanced, no additional oversampling and 

undersampling is required, and the model can be directly trained. 
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Figure 7. Balanced Data of Dataset (Binary Classification). 

 To fix class imbalance in the six-class task, a hybrid sampling method blending random undersampling 

and oversampling was used. The six anomaly categories are Vegetation, Diode, Shadowing, Cell, Cracking, 

and Offline Module, each set to have 1,000 samples. If a class had more images, random undersampling cut 

it to 1,000; if fewer, random oversampling brought it up. This balanced all six classes, curbing model bias. 

The balanced dataset in Figure 8 was then split into training, validation, and test subsets via stratified sampling 

to keep class ratios. 

 

 

Figure 8. Balanced Data of Dataset 1 (6-Class Classification). 

 

    3.3. Data Resize and Augmentation 

 As mentioned in the introduction, the initial resolution of the images is 24 * 40 pixels. These 

resolutions are not suitable for direct input into the proposed model. Therefore, in this study, all images were 

resized to 224 * 224 pixels. This preprocessing step ensures that the images meet the input size requirements 

of the model, thereby enabling proper training and inference. Also, during the data preprocessing steps, data 

augmentation techniques such as random horizontal flipping, random rotation (up to ±10%), and random zoom 

(up to ±10%) random width and height shifts (up to 20%) and random shear (up to 20%) were applied. 
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3.4. Proposed Model Structure 

 The proposed CNN model, named SARNet, is built upon an enhanced architecture that incorporates 

StackNet as its backbone, integrating ResoNet modules and Squeeze-and-Excitation (SE) attention 

mechanisms. Together, these components enhance the model’s representational power and focus on relevant 

features, improving classification accuracy and robustness in solar panel anomaly detection tasks. 

 

 

Figure 9. Residual block structure diagram for each stage. 
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Figure 10. The proposed StackNet structure. 

 

3.4.1. StackNet 

 The proposed StackNet architecture builds upon the ResNet-18 backbone, with targeted modifications 

to enhance feature extraction efficiency while maintaining computational lightness. The model begins with a 

large-kernel convolutional layer for effective low-level feature capture, followed by normalization, activation, 

and pooling to reduce spatial resolution early and accelerate training.  

 StackNet's core consists of four residual stages that incrementally increase channel dimensions from 

64 to 512 while reducing spatial dimensions through stride convolutions. As shown in Figure 9, each residual 

block employs shortcut connections to maintain direct information flow, mitigating the vanishing gradient 

problem. When dimensional mismatches occur, 1×1 convolutions adjust the shortcut path. Additionally, 

dropout is integrated into each block to prevent overfitting. In Figure 10, StackNet strikes a balance between 

architectural depth and training efficiency, offering strong representational capacity with minimal increase in 

complexity. This makes it particularly suited for solar anomaly detection tasks where both performance and 

computational cost are critical. 

3.5. Experimental Setup & Technology 

3.5.1. Experimental Setup 

 The experimental setup for training the model involves configuring key hyperparameters, the 

optimizer, and several callback functions to ensure effective learning and model generalization. 

 The model training process is configured with 100 epochs and an initial learning rate of 0.001, 

employing the Adam optimizer for its proven effectiveness in deep learning tasks. Batch sizes are adapted to 

task complexity and dataset characteristics: 438 for binary classification and 29 for six-class classification. To 

enhance generalization and training efficiency, several callback mechanisms are employed. Early stopping 

monitors validation loss and terminates training after 30 consecutive epochs without improvement, restoring 

the best weights. The learning rate is adaptively reduced by a factor of 0.1 when no validation improvement 

is observed for 20 epochs, with a floor set at 0.000006 to maintain training stability. Model checkpoint ensures 

the best-performing weights, based on validation loss, are retained. These strategies collectively optimize 

convergence and mitigate overfitting, contributing to robust model performance. 
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3.5.2. Technology 

The technology use in this research is displayed in Table 1： 

Table 1. Summary of Relevant Technology Involved in This Research. 

Software Framework Tensorflow 

Language Python 

Libraries Numpy, Keras, Matplolib, 

TensorFlow 

Hardware Central Processing Unit (CPU) 12th Gen Intel(R) Core(TM) i5-

12500H   2.50 GHz 

Graphic Processing Unit (GPU) Intel(R) Iris(R) Xe Graphics 

 

3.6. Model Performance Evaluation Metrics 

 The 9 main evaluation metrics used in this experiment were: Loss, Accuracy, Specificity, Recall 

(Sensitivity), Precision, F1 Score (Dice Score), Confusion Matrix, ROC-AUC Curve, and Precision-Recall 

Curve. Each of these 9 metrics is described below. 

3.6.1. Loss Function  

 Binary Cross-Entropy function is used, it is a loss function suitable for binary classification tasks, 

which guides the optimization process by measuring the difference between the predicted probability of the 

model and the actual label. 

             (1) 

⚫  : the true label of the sample, taking values of 0 or 1. 

⚫  : the model's predicted probability for the i-th sample being in class 1, typically output by the sigmoid 

activation function. 

⚫ N: the total number of samples. 

Sparse classification cross entropy measures the quality of a model's predictions by taking the logarithm of its 

prediction probability for the correct category and taking a negative value. It is suitable for situations where 

the label is an integer representing the category index. 

                     (2) 
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⚫  : the true label of the sample. 

⚫  : the probability of the model predicting the category. 

⚫ C: the total number of categories in the classification task. 

3.6.2. Accuracy 

The proportion of correctly predicted samples by the model to the total sample size. 

                                              (3) 

⚫ A: the predicted values or predicted labels for the samples. 

⚫ B: the true or ground truth labels for the samples. 

⚫ n: the total number of samples. 

3.6.3. Specificity (SP) 

Specificity is used to measure the ability of classification models to correctly identify negative class samples. 

                                                               (4) 

⚫ TN (True Negatives): The number of samples correctly predicted as negative by the model. 

⚫ FP (False Positives): The number of samples incorrectly predicted as positive by the model. 

3.6.4. Sensitivity/Recall (SE) 

Sensitivity/Recall is an indicator that measures how many actual positive class samples a classification model 

can recognize. 

                                      (5) 

⚫ TP (True Positive): This represents the number of positive samples that were correctly identified as 

positive by the model. 

⚫ FN (False Negative): This represents the number of positive samples that were incorrectly identified 

as negative by the model. 

⚫ P: This is the total number of actual positive samples in the dataset, which is the sum of TP and FN. 

3.6.5. Precision 

Precision measures the proportion of samples predicted as positive by the model that are correct. 

                                                              (6) 
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3.6.6. F1 Score (Dice Score) 

F1 Score is the harmonic mean of precision and recall. 

                                              (7) 

3.6.7. Confusion Matrix 

Confusion Matrix, like Table 2 is a tool used to evaluate the performance of classification models, especially 

for binary classification problems. It compares the predicted results of the model with the actual labels to form 

a matrix that displays four possible outcomes: 

Table 2. Outcomes of Confusion Matrix. 

 Predicted Positive (1) Predicted Negative (0) 

Actual Positive (1) True Positive (TP) False Negative (FN) 

Actual Negative (0) False Positive (FP) True Negative (TN) 

 

3.6.8. Receiver Operating Characteristic (ROC) 

True Positive Rate (TPR): TPR represents the proportion of samples that are correctly predicted as positive 

among all samples that are actually positive.   

                                                         (8) 

False Positive Rate (FPR): FPR represents the proportion of samples that are incorrectly predicted as positive 

among all samples that are actually negative.   

                                                         (9) 

AUC (Area Under Curve): AUC represents the area under the ROC curve, and its value ranges from 0 to 1. 

The closer the AUC is to 1, the better the classification performance of the model. 

3.6.9. Precision-Recall (PR) 

 The Precision-Recall curve shows the changes in precision and recall under different decision 

thresholds. Precision and recall will vary under different thresholds, so the Precision-Recall curve helps 

analyze the performance of the model under various decision boundaries. The PR curve plots the changes in 

recall and precision and evaluates the performance of the model on a specific class through the area (AUC-

PR). 
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4. EXPERIMENTAL RESULT AND ANALYSES 

 This study compares three CNN architectures under identical training settings to ensure fairness. 

StackNet employs residual connections for deep feature extraction and stable training. SRNet builds on 

StackNet by adding ResoNet modules to capture multi-scale spatial features. SARNet further introduces 

attention mechanisms to highlight task-relevant regions. All models are trained for 100 epochs at an initial 

learning rate of 0.001 using the Adam optimizer. Batch sizes are task-specific: 438 for binary classification, 

29 for the six-class task. To enhance generalization, training incorporates early stopping after 30 stagnant 

epochs, checkpointing based on validation loss, and a learning rate reduction (by 0.1 after 20 stagnant epochs, 

with a minimum of 0.000006). These configurations ensure stable training and optimal model performance. 

This evaluation not only assesses StackNet’s performance across varying datasets and classification tasks but 

also provides insights into which dataset facilitates better model optimization. 

4.1.  StackNet on Dataset 1- Binary Class 

 In the binary classification task, StackNet achieved the highest overall performance. As shown in 

Figure 11, the training loss reached 0.3492, while the validation loss was slightly higher at 0.3671, indicating 

minimal overfitting. In terms of accuracy, the model achieved 88.76 percent on the training set and 88.27 

percent on the validation set, showing strong consistency. In Table 3 the test set achieved 88.3% accuracy and 

a loss of 0.367, confirming its effectiveness on unseen data.   

 

(a)  Train Loss = 0.3492, Val Loss =  0.3671 (b) Train ACC = 0.8876, Val ACC = 0.8827 

Figure 11. (a) and (b) present StackNet model Accuracy and Loss Curve on Binary Class. 

 The model StackNet demonstrates strong classification performance with a high number of correct 

predictions. As shown in Figure 12, it correctly identified 1,373 true positives and 1,274 true negatives, while 

misclassifying 127 false positives and 226 false negatives. These results indicate a balanced performance with 

relatively low error rates, suggesting the model is effective at distinguishing between the two classes. 
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Figure 12.  StackNet model Confusion Matrix on Binary Class. 

 The model StackNet achieved a ROC-AUC score of 0.95, as shown in Figure 13, indicating excellent 

discriminatory power between the positive and negative classes. This high value reflects the model’s ability 

to maintain a strong balance between sensitivity and specificity across various threshold settings, suggesting 

reliable overall performance. 

 

Figure 13. StackNet model ROC-AUC of 0.95 on Binary Class. 

 As shown in Figure 14, the StackNet model achieved a PR-AUC score of 0.95 on the binary class, 

demonstrating excellent precision-recall performance. This indicates that the model maintains high precision 

while effectively capturing the majority of positive cases, making it well-suited for handling class imbalance 

and minimizing false positives and false negatives. 
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Figure 14. Present PR-AUC of 0.95 on Binary Class. 

 

4.1.2. StackNet on Multi–Class Task 

 In contrast, the 6-class classification task posed greater challenges. As reflected in Figure 15, the 

training loss was 0.982 and the validation loss increased to 1.0872, indicating a moderate gap that may suggest 

some overfitting. The training accuracy reached 73.22 percent, while the validation and test accuracies both 

stood at 69.22 percent. The test loss matched the validation loss at 1.0872, confirming consistent but limited 

generalization. These results suggest that the model struggled to capture the complexity of the multi-class task 

compared to binary classification. 

 

 

(a) Train Loss = 0.982, Val Loss = 1.0872 (b) Train ACC = 0.7322, Val ACC = 0.6922 

Figure 15. (a) and (b). StackNet model Accuracy and Loss Curve on 6-Class. 
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 The model shows varied performance across solar panel fault types, as shown in Figure 16. The model 

demonstrates strong performance in detecting class 2 diode and class 3 shadowing faults but faces challenges 

with class 6 cracking and class 4 cell faults. Class 1 vegetation and class 4 cell faults show some confusion 

with other categories. Overall, the model performs well on diode and shadowing but needs improvement for 

cracking and cell faults. 

 

Figure 16. StackNet Model Confusion Matrix for 6-Class. 

 

Figure 17. StackNet Model ROC Curve on 6-Class. 

 As shown in Figure 17, the ROC curve shows a multi-class classification model's performance across 

six classes. The dashed diagonal line represents a random classifier. Class Shadowing has the highest AUC of 

0.99. Vegetation, Diode, Cell, and Offline-Module have AUC values above 0.90. Class Cracking has a lower 

but acceptable AUC of 0.86. Overall, the model shows good discriminatory power, with Shadowing 

performing best. 
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Figure 18. StackNet Model PR Curve on 6-Class. 

 Figure 18 presents the Precision-Recall curves for six classes in the multi-class model. Shadowing 

achieves the highest AUC value of 0.96, indicating excellent detection performance. Diode and Offline-

Module follow with AUC values of 0.88 and 0.80, respectively. In contrast, Cracking and Vegetation yield 

lower AUC values of 0.59 and 0.62, highlighting their classification difficulty. Overall, the model performs 

well, though improvements are needed for specific fault types. 

4.2. Current Experiments Results Summary 

 In this research, the architecture demonstrates varying levels of performance across classification tasks, 

emphasizing the critical influence of architectural design in solar panel fault classification. 

 The baseline StackNet serves as a reliable benchmark in the binary classification task, achieving a loss 

of 0.3671 and an accuracy of 88.27%. This significantly notifies both classification accuracy and robustness, 

especially under complex and diverse imaging conditions. However, StackNet struggles in the complex six-

class classification, with PR-AUC scores dropping to 0.59 for Cracking and 0.62 for Vegetation. This indicates 

its limited ability to extract fine-grained features and handle faults with high spatial overlap or subtle visual 

signs, revealing its constraints in multi-class situations. It gets an F1-score of 0.91 in Cracking, versus 

StackNet’s 0.87, and an overall F1-score of 0.816 compared to StackNet’s 0.695. In Dataset 2’s binary task, 

SARNet achieves 89.1% accuracy. These improvements validate the role of attention in complementing multi-

scale feature extraction, particularly in identifying subtle or overlapping faults. Overall, the comparative 

experiments highlight the effectiveness of the proposed SARNet architecture. The integration of StackNet, 

ResoNet, and Attention modules significantly enhances both classification accuracy and robustness, especially 

under complex and diverse imaging conditions. The results of each experiment are summarized in Table 3. 
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Table 3. Compare models’ Performance Metrics-1. 

Model Class Loss Accuracy Recall Precision F1-Score 

StackNet 

Model 

2-class 0.3671 0.8827 0.8326 0.9251 0.8764 

6-class 1.0872 0.6922 0.6922 0.702 0.695 

2-class 0.571 0.878 0.818 0.783 0.800 

  

4.3. Model Explainability 

 To enhance the interpretability of deep learning models in fault detection tasks, this research 

incorporates the Grad-CAM (Gradient-weighted Class Activation Mapping) algorithm as a post hoc 

visualization tool. Grad-CAM computes the gradients of the target class prediction with respect to the feature 

maps of a convolutional layer to produce a heatmap that highlights the regions the model focuses on when 

making a decision [32]. This method is model-agnostic and widely applicable, especially for CNNs. In this 

study, Grad-CAM was applied to visualize and interpret three specific classification tasks derived from the 

dataset: 

• The model distinguishes between normal and abnormal solar modules. Grad-CAM visualizations, like 

Figure 19 and Figure 20 reveal that when an image is classified as anomaly, the attention maps 

typically highlight critical fault regions such as cracks, hotspots, or dirt accumulation, indicating that 

the model is focusing on meaningful defect areas within the infrared spectrum. 

 

 

Figure 19. Grad-CAM Visualization of Binary Class on Anomaly Sample. 
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Figure 20. Grad-CAM Visualization of Binary Class No-Anomaly). 

• The model categorizes faults into six types: Vegetation, Shadowing, Cell damage, Diode Faults, 

Cracking, and Offline-Module. Heatmaps show the model can target regions for each fault type, such 

as plant-covered areas for Vegetation or structural breaks for Cracking, proving its ability to 

distinguish multiple fault types in thermal images. Grad-CAM Visualization of six-class shows from 

Figure 21 to Figure 26.     

 

Figure 21. Grad-CAM Visualization of Cell. 

 

 

Figure 22. Grad-CAM Visualization of Cracking. 
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Figure 23. Grad-CAM Visualization of Diode. 

 

 

Figure 24. Grad-CAM Visualization of Offline-Module. 

 

 

Figure 25. Grad-CAM Visualization of Shadowing. 
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Figure 26. Grad-CAM Visualization of Vegetation. 

 

5. CONCLUSION 

 In this paper, a deep learning-based solar panel fault detection system was developed and evaluated 

using an infrared (IR) dataset. The system employs a custom CNN with attention mechanisms for both binary 

and multi-class classification. Designed to handle low-and high-resolution images efficiently, the proposed 

StackNet model delivers accurate anomaly detection with strong deployment potential. On the binary 

classification task, it reached an accuracy of 91.7%, precision of 94.2%, and an F1-score of 91.4%, 

demonstrating its strong ability to distinguish between normal and faulty panels. In the six-class classification 

task using the same dataset, the model achieved an accuracy of 81.63% and a consistent F1-score and precision 

of approximately 81.6%, reflecting its robustness in identifying diverse fault types such as cracks, diode issues, 

and vegetation. The model's architecture was optimized to balance performance with computational 

efficiency, enabling faster inference without sacrificing accuracy. The user-oriented web-based GUI further 

enhances accessibility, allowing real-time prediction through simple image uploads, thus bridging the gap 

between deep learning research and field applications. 

 While the model performs well in both binary and multi-class classification scenarios, there remains 

room for further refinement. The primary limitation of the current model is its reduced precision in detecting 

faults with subtle or overlapping visual characteristics, particularly in categories such as cracking and 

vegetation. These faults often share similar visual patterns, making them difficult to distinguish. Additionally, 

the dataset suffers from annotation noise and inconsistent labeling, which may compromise model accuracy 

and generalization. This issue is especially problematic for the model’s performance in fault detection across 

diverse real-world conditions. Furthermore, the absence of paired multimodal samples, such as aligned 

infrared (IR) and electroluminescence (EL) images, hinders the model’s ability to exploit complementary 

features from both imaging modalities, preventing the model from fully benefiting from the combined insights 

they could provide for more accurate fault detection. 

 Future work will focus on improving model accuracy by implementing multi-label and refined 

classification techniques to better handle overlapping fault categories. To address annotation noise and 

inconsistent labeling, semi-supervised learning will be explored, along with refining the labeling process for 

greater reliability.  
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 Additionally, aligning infrared (IR) and electroluminescence (EL) images will be prioritized to enable 

true multimodal learning, allowing the model to benefit from both modalities simultaneously. Developing 

time-efficient models for industrial applications will also be key, ensuring the model’s effectiveness while 

reducing computational overhead. Real-world validation through field testing and the use of drone-captured 

IR or EL images will be essential for validating generalization and enhancing the model’s applicability in 

dynamic environments, promoting automated and reliable solar panel maintenance strategies. 
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