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ABSTRACT 

 This paper deals with the challenge of classifying solar panel images as clean or dusty, at a scale that matters to 

reduce photovoltaic-related costs and inspection efforts. To solve this challenge in a transparent and computationally 

efficient way, we propose a novel residual depth-wise separable lightweight Inception-based model created from scratch. 

The backbone is based on bottleneck (1×1) convolutions and spatially separable (1×3) and (3×1) convolutions grouped in 

multi-branch Inception style residual blocks, and is also informed by a convolution only attention module that merges 

bottleneck and spatially separable convolutions to produce feature re-weighting maps without utilizing pre-existing attention 

frameworks such as SE or CBAM. The model is learned on realistic solar panel dust data with disjoint training, validation, 

and testing sets. The images are rescaled at a fixed resolution and augmented through geometric transformations so as to 

enhance generalization capabilities.  
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 Quantitative experiments test the trained network on standard classification metrics, with the addition of confusion 

matrices and precision-recall curves to observe the performance of each class in detail, including accuracy, precision, recall, 

F1-score and ROC–AUC. Grad-CAM and LIME are embedded as XAI tools to show which areas of the solar panel images 

lead the model to its predictions. The results, in general, suggest that the lightweight and interpretable network design is 

capable of capturing discriminative dust related patterns, while the XAI analysis discloses the potential and existing 

limitations, as well as clear directions on the further enhancement of the methodology.  

Keywords: Image classification, lightweight Inception network, depth-wise separable convolution, convolutional attention 

mechanism. 

 

 

1. INTRODUCTION 

 Image classification plays a fundamental role in computer vision and serves as a foundation for many 

practical applications, such as quality inspection, medical diagnosis, and environmental monitoring. 

Convolutional neural networks (CNNs), a class of deep learning models, have demonstrated remarkable 

performance on large-scale image classification benchmarks in the past few years by learning hierarchical feature 

representations from raw data. Nevertheless, traditional CNN models are usually computationally heavy and act 

as "black boxes," hindering their application in resource-limited environments and bringing doubts on the 

reliability of their decisions.  

 Solar energy systems are vulnerable to environmental conditions, including dust, dirt, and stains that are 

deposited on the surface of photovoltaic (PV) modules. A moderate amount of soiling is enough to reduce energy 

production, leading to higher operation and maintenance costs. Manual inspection of large solar farms is labour-

intensive and subjective, which motivates the development of automated computer vision systems that can 

reliably classify solar panel images as clean or dirty. For such systems to be adopted in practice, they must not 

only achieve reasonable predictive performance but also provide transparent and interpretable explanations of 

their decisions to engineers and operators. 

 The need for interpretability has driven increasing interest in explainable AI (XAI) methods and attention 

mechanisms. XAI methods like Gradient-weighted Class Activation Mapping (Grad-CAM) and Local 

Interpretable Model-agnostic Explanations (LIME) allow to identify which regions in a  image or super-pixels 

lead the model to a specific prediction, potentially revealing spurious correlations and failure modes. In contrast, 

attention mechanisms are architectural primitives that physically re-weight feature maps to enable the network to 

attend more to useful features and less to noisy background patterns. When designed carefully, attention can 

improve both performance and interpretability, particularly in tasks where discriminative visual cues are localized, 

as in dust detection on solar panels. 

 In this paper, we design and implement from scratch a novel residual depth-wise separable lightweight 

Inception model for the specific application of solar panel dust image classification. The backbone is built solely 

by a sequence of bottleneck (1×1) and spatially separable (1×3) and (3×1) convolutions within multi-branch 

inception-style residual blocks. Based on these blocks, we design a novel, all Convolution-based attention module, 

which combines bottleneck and spatially separable convolutions to compute features re-weighting maps, 

discarding prior mechanisms like Squeeze-and-Excitation or CBAM.  
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 The model is trained and tested on a real-world solar panel dust dataset with conventional train–

validation–test splits and geometric data augmentation, and its property is further explored with Grad-CAM and 

LIME to offer visual explanations for right and wrong predictions. 

 A full end-to-end training and evaluation pipeline based on the solar panel dust dataset is built, including 

data preprocessing, splitting, model training with early stopping and learning rate scheduling, evaluating 

quantitatively with accuracy, precision, recall, F1-score, confusion matrices, and ROC–AUC. The integration of 

Grad-CAM and LIME into the analysis workflow to generate visual explanations that reveal which regions of 

solar panel images drive the model’s decisions, thereby improving the interpretability and trustworthiness of the 

proposed system. 

 The remainder of this report is structured as follows. Section 2.0 Review of the Literature: this section 

presents the related work on image classification, ensemble models, mechanism of attention, and XAI. Section 

3.0 outlines the proposed methodology, including detailed descriptions of the dataset, preprocessing operations, 

custom model architecture, attention mechanism, and the application of XAI methods. Section 4.0 reports the 

experiment outcomes, including quantitative results and visual interpretations based on XAI, and also discusses 

the strengths and limitations of the model. This report is concluded in Section 5.0 with a summary of its key 

findings and the the major limitation. 

2. RELATED WORK 

 Dust deposition on the surface of solar panels is a common problem that can lead to significant energy 

loss – efficiency reduction of 30–40% and power loss of up to 86% in extreme drying conditions have been 

reported. This has led to the development of several investigations on the detection of dust and cleaning 

optimization for photovoltaic (PV) modules. Initial methods have been developed for panel cleaning decision-

making from non-visual information using machine learning. For instance, a regression-tree-based dust estimation 

unit for predicting the dust level from environmental sensors (irradiance, temperature) and output power of the 

panel was introduced by Shaaban et al. (2020)[1] A dust accumulation estimation based on the panel output, 

irradiance, and temperature as input was also presented by Mokhtar et al. (2022)[2] which is an ANN system that 

estimates dust buildup and alarms for cleaning when a certain threshold is crossed. These data-driven approaches 

have shown that smart scheduling can decrease energy loss by ~60% and maintenance overhead by ~80% over 

routine cleaning. However, they require physical sensors and cannot determine at what depth in the panel dirt is 

attached, so they are not able to visually classify or locate dust on the panels. 

 Hence, most recent works rely on image-based dust detection on solar panels using CNNs, allowing for 

automatic visual analysis of panel cleanliness. Alçin et al. (2025)[3] proposed a novel lightweight CNN, 

SolPowNet tailored for the binary classification of solar panel images (clean vs dusty). Their model was trained 

on 842 panel images (502 clean, 340 dusty), and outperformed standard deep networks such as AlexNet, 

VGG16/19, ResNet50, InceptionV3 using the same dataset by achieving a classification accuracy of 98.8%. 

SolPowNet’s architecture is optimized for complexity, with only ~11.17 million parameters – relatively tiny 

compared to typical off-the-shelf CNNs – thus facilitating real-time embedded application. This shows that a 

tasked CNN can be both accurate and computationally light for solar panel dust detection. One constraint is that 

SolPowNet was tested on a moderate-sized proprietary dataset; hence, its extrapolation to wider scenarios 

(different lightings, panel types) is not secured.  
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 Furthermore, although that work achieves high accuracy, it does not have an option for the user to ascertain 

why the model made the predictions that it does (we think of it as a black-box classifier with no visual explanations 

to the user). 

 Another study by Alatwi et al. (2024)[4] employed a pre-trained CNN models for an image classification 

perspective. Instead of introducing a novel architecture, they used 20 state-of-the-art CNN architectures (e.g. 

VGG, ResNet, MobileNet, DenseNet, etc.) as fixed feature extractors and trained an SVM classifier to tell clean 

vs dusty panels. Their dataset consisted of 1,068 images (405 clean, 663 dirty) collected from public sources in 

diverse conditions. The best accuracy is 86.79 % based on the features of DenseNet-169 with a linear SVM. This 

two-stage scheme (deep CNN features + SVM) substantiates that CNN-learned image representations are suitable 

for the application. However, the accuracy straightened out below 90%, suggesting that it could be improved – 

perhaps because they didn’t fine-tune the CNNs on the solar panel dataset (some useful information may be lost 

by using a separate classifier). The approach is also relatively heavy since the best DenseNet is a huge model, 

which contradicts the lightweight deployment demand. On the plus side, Alatwi et al. – did consider model 

explainability: they used the LIME method to determine which part of the images affected the predictions for 

“dusty” vs “clean.” This generated visual signs (highlighted panel patches) demonstrating where the model has 

“seen” dust in the panel, a useful progression toward interpretable AI in this field. Their contribution demonstrates 

the advantage of explainability, although it did not include an attention mechanism directly in the model - the 

explanation is post-hoc. 

 For monitoring panel soiling in the case of large-scale solar farms, Unmanned Aerial Vehicles (UAVs) 

with camera serve as a feasible solution. Gao and Li (2023)[5] introduce a deep learning approach for duster 

detection on PV panels based on UAV images using an enhanced YOLOv5 object detection model. Their 

adaptations tailored YOLOv5 to the application: a novel additional detection head to address the huge scale 

disparities of dust patches when drones fly over at different altitudes, among other custom “tricks” to enhance 

detection of dust spots on largescale images. The final model is pretty lightweight and real-time as it runs on a 

normal CPU for in situ analysis. In the experiments, their improved YOLOv5 shows a better performance on the 

standard model in terms of detection accuracy and F1-score and also increases the inference speed. It helps show 

how targeted network modifications can tune a general object detector to the needs of dust detection. A drawback 

is that the method yields bounding boxes of detected dust, but it does not explicitly infer the overall cleanliness 

condition of a panel; it’s just focused on finding dust clusters. Also, like most object detectors, it does not natively 

provide an explanation for why a region is classified as dust other than by bounding the box. Still, the work of 

Gao and Li is significant in demonstrating that UAV-based inspection can be made automatic with efficient CNNs, 

and it underscores the importance of multi-scale attention to tiny objects (dust) in high-resolution images. 

 In a related vein, Naeem et al. (2025) [6] propose SDS-YOLO, an attention-based YOLO model to detect 

solar panel soiling in aerial images. Their system is designed for two prevalent soiling types – dust film and bird 

droppings – which have differing visual textures. To address the challenge of small defect detection, they 

introduced into the CNN a Convolutional Block Attention Module (CBAM), and proposed two dedicated 

detection heads, one for the dispersed dust region and one for small concentrated droppings. This multi-target, 

attention-enhanced strategy led to substantial improvements: the CBAM-based model increased mean average 

precision and F1-score by around 40% and 26%, respectively, for bird-dropping detection as compared with 

baseline YOLO, and also gave a slight improvement on dust detection.  
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 Remarkably, these improvements in accuracy were achieved with 24% fewer model parameters after 

pruning unnecessary layers, making SDS-YOLO more applicable to edge devices. The attention module usage is 

crucial here, since narrowing down the CNN to focus on specific regions/features, helped reduce false 

positives/separates them better with small soiling features. This demonstrates how tailored attention-based 

methods can significantly improve the CNN trustworthiness for PV panel inspection. Nevertheless, similar to 

Gao’s approach, this method is designed as an object detection problem with a rather complicated pipeline. It 

detects and locates soiling spots, but it does not give a simple yes/no cleanliness label for the entire panel, and it 

is not explicit in generating explanations that are friendly to humans (the attention is internal within the model). 

There remains a gap to converge such attention-guided accuracy with user-interpretable outputs for the end users. 

 In summary, existing literature shows a clear evolution from sensor-based, data-centric approaches that 

trigger cleaning decisions from electrical and environmental measurements to image-based deep learning models 

that directly detect dust on PV panels. Image-centric CNN methods, especially custom architectures like 

SolPowNet and pre-trained backbones combined with SVMs, achieve much higher accuracy in distinguishing 

clean and dusty panels than earlier non-visual methods. UAV-based detectors further extend this idea by 

localizing soiling patches in aerial images and optimizing YOLO-style architectures for efficiency on drones. 

However, these works either rely on heavy pre-trained networks, focus on detection rather than simple binary 

classification, or treat attention and features as internal black boxes with limited use of explainability tools. In 

contrast, this project targets a from-scratch, ultra-lightweight CNN built only from efficient convolutions (1×1 

and separable layers) with an explicit convolution-only attention module and couples it with Grad-CAM and 

LIME to visualize how the model focuses on soiling. In doing so, it aims to combine the deployment advantages 

of lightweight architecture with stronger transparency and interpretability, providing a compact, explainable AI 

solution for solar panel dust detection that can support trustworthy maintenance decisions. 

3.  MATERIAL AND METHOD 

3.1. Dataset 

 To build and evaluate the proposed model, we use a solar panel dust detection image dataset organised for 

a binary classification task. The goal is to discriminate between clean and dirty PV modules using RGB images 

acquired in real operating conditions. This configuration is selected to simulate realistic inspection scenarios and 

to verify the ability of proposed custom network to learn discriminative features between dust and stain 

accumulation.  

 The dataset is located in a local directory, organized in a way that is compatible with the Keras 

ImageDataGenerator API. The high-level data is split into two main folders: a train folder to build the training 

and validation sets, and a test folder, as an independent test set. Each of these two directories contains two 

subdirectories, clean and dirty, with the images from each class. This organisation allows class labels to be 

inferred directly from folder names, ensuring a simple and reproducible loading process. 

During preprocessing, all images are resized to a fixed resolution of 224×224 pixels with three colour channels 

to match the input requirements of the proposed convolutional neural network. Pixel values are normalised to the 

range [0,1] by dividing by 255.0.  
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 After the automatic splitting procedure described in Section 3.2, the resulting subsets contain 539 images 

for training, 134 images for validation, and 169 images for testing, with both clean and dirty samples present in 

each subset. Some randomly selected examples of clean and dirty solar panel images can be visualised to inspect 

the variety of lighting conditions, viewpoints, and dust patterns.   

3.2. Proposed Model 

 The presented model is an original residual depth-wise separable lightweight Inception network crafted 

from ground up to the task of classifying dust on solar panels. The design follows the coursework constraint of 

only using bottleneck 1×1 convolutions and spatially separable convolutions in the form of 1×3 and 3×1 kernels, 

as described in the lectures. Unlike conventional approaches, no pre-trained backbone is exploited, and all weights 

are trained from scratch on the solar panel dataset.  

 The network can be conceptually divided into three main components: a stem block, a stack of Inception-

style residual blocks with attention, and a classification head. The stem block consists of two spatially separable 

convolutions followed by max pooling. These layers quickly reduce the spatial resolution and extract low-level 

features from the input 224×224×3 RGB images. 

 The core of the network is formed by three lightweight Inception residual blocks. Each block uses only 

the basic building elements defined in the notebook: batch normalisation followed by ReLU activation, bottleneck 

1×1 convolutions, and spatially separable 1×3 and 3×1 convolutions. Within each block, the input feature map is 

processed by multiple parallel branches: one branch applies a single 1×1 convolution, a second branch applies a 

1×1 bottleneck followed by one spatially separable convolution, and a third branch applies a 1×1 bottleneck 

followed by two stacked spatially separable convolutions. 

 A second branch applies a 1×1 bottleneck followed by one spatially separable convolution, and a third 

branch applies a 1×1 bottleneck followed by two stacked spatially separable convolutions. The outputs of these 

branches are concatenated along the channel dimension and passed through another 1×1 bottleneck convolution 

to control the number of channels. A residual shortcut connection is then added, using either identity mapping or 

a 1×1 projection if the number of channels or the spatial resolution does not match. This architecture is Inception-

based in that it performs multi-branch feature extraction but also uses residual connections to enable better flow 

of gradients. 

 To further enhance the model’s focus on dust-related regions, a custom convolution-only attention block 

is attached after each Inception residual block. This attention module is also implemented exclusively with 

bottleneck 1×1 convolutions and spatially separable convolutions. Given an input feature map, the module first 

reduces the number of channels with a 1×1 convolution, applies batch normalisation and ReLU activation, and 

then processes the reduced features with a spatially separable convolution to capture local spatial dependencies. 

Another 1×1 convolution restores the original channel dimension, and a sigmoid activation produces an attention 

map with values between 0 and 1. The attention map is multiplied element-wise with the original input feature 

map to generate re-weighted features in which informative locations and channels are emphasised and less 

relevant ones are suppressed. Importantly, this mechanism does not rely on existing attention designs such as 

Squeeze-and-Excitation or CBAM and thus fully satisfies the requirement of being a custom, lecture-compliant 

attention design. 
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 After the last attention block, the feature maps are pooled by a Global Average Pooling layer, which 

reduces the spatial dimensions to a single feature vector for each channel. A dropout layer with dropout rate of 

0.4 is applied to prevent overfitting by randomly setting to zero a fraction of features in training. Then, the 

probability that the input image is a dirty image is outputted by a fully connected layer with a single neuron and 

sigmoid activation. The proposed model has about 504, 161 trainable parameters, which makes it lightweight for 

possible usage in mobile/edge devices. 

 In addition to the core architecture, the notebook integrates Grad-CAM and LIME as post hoc explainable 

AI modules. Grad-CAM generates class-specific activation heatmaps by backpropagating gradients from the 

output to the last convolutional layer, while LIME approximates the model’s behaviour around a particular input 

with a simple interpretable model using perturbed super-pixels. These tools are applied to selected test images to 

visualise which regions of the solar panels most strongly influence the model’s predictions. 

3.3. Evaluation Strategy  

 The performance of the proposed model is assessed using a combination of quantitative classification 

metrics and qualitative visual explanations. All quantitative metrics are computed on the independent test set 

using the predictions produced by the trained network. 

An example has been provided below: 

Accuracy (ACC) measures the overall proportion of correctly classified images and is defined as: 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision (P) for the positive (dirty) class quantifies how many images predicted as dirty are truly dirty: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (R) or sensitivity measures the proportion of truly dirty panels that are correctly identified: 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 − score (F1) is the harmonic mean of precision and recall and is given by: 

𝐹1 =
2 ⋅ 𝑇𝑃

2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

 A confusion matrix is also computed to provide a detailed view of how many clean and dirty images are 

correctly classified or misclassified. This matrix directly shows the distribution of TP, TN, FP, and FN and allows 

a more fine-grained analysis of the model’s behaviour on both classes. 
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 Furthermore, the Receiver Operating Characteristic (ROC) curve and its corresponding Area Under the 

Curve (ROC–AUC) are used to evaluate the model’s discriminative ability over different decision thresholds. The 

ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR), where 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,  𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

The ROC–AUC is then computed numerically from the ROC curve and summarises the trade-off between TPR 

and FPR. 

 A Precision–Recall (PR) curve is also plotted by computing precision and recall at various thresholds on 

the predicted probabilities for the dirty class. This curve is especially useful for imbalanced class distributions or 

when the positive class is more important to predict accurately than the overall accuracy. 

 These metrics are calculated in the notebook by evaluating the model on the test generator to get the test 

loss and accuracy, then getting predicted probabilities and labels to create a confusion matrix, a detailed 

classification report (precision, recall, F1-score), and finally ROC and PR curve plots with ROC–AUC. 

Qualitative results: Grad-CAM and LIME are used to produce explanations on a set of representative test images, 

which allows us to visually interpret which areas the model focuses on to make its predictions.  

3.4. Environment Execution 

 All the experiments in this work have been carried out on a personal computer with Windows 11 operating 

system, and a Python environment managed by Anaconda was used. The implementation was in Python with 

TensorFlow 2.x as the Keras high-level API. Also, NumPy was used for numerical calculations, scikit-learn to 

calculate classification metrics and curves, matplotlib to generate plots of training histories and evaluation curves, 

LIME, and scikimage for producing and visualizing local explanations. 

 The hardware environment was a multi-core processor, and the system memory was large enough for the 

mini-batch training using the batch size of 16. We did not use a dedicated GPU; training and inference were done 

on the CPU. With this setup, training the custom lightweight Inception model for up to 50 epochs using early 

stopping took about 20 minutes (wall-clock time), as the notebook shows. Although there is no GPU acceleration, 

the relatively small number of parameters (around 0.5 million) allows this model to be trained and tested within 

reasonable time, which validates that the proposed architecture is suitable for implementation in execution 

environments with limited resources. 

4. EXPERIMENTAL RESULTS  

 In this section, the results of the experiments conducted on the solar panel dust image dataset using the 

proposed residual depth-wise separable lightweight Inception module are discussed. The model is trained from 

scratch on the training and validation splits described in Section 3 and evaluated on the unseen test split. 

 Training is done for a maximum of 50 epochs with early stopping after 19 epochs when the validation loss 

no longer improves using the Adam optimizer. Figure 1 illustrates the progression of training and validation loss 

and accuracy. The training accuracy quickly rises from 0.90 to nearly 0.98 and stays high, while the training loss 

also rapidly drops from about 0.29 to under 0.05. 
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 On the other hand, the validation curves are significantly more volatile: the validation accuracy oscillates 

between about 0.37 and 0.72, the validation loss decreases at first but then it suddenly shoots up after epoch 13. 

This suggests the network may be fitting the training data well, but the small size of the dataset may lead to 

overfitting, which supports the use of early stopping and learning-rate reduction.  

 

Figure 1. Train/validate the loss & accuracy curve 

 After training, the best model checkpoint according to the validation performance is selected and evaluated 

on the test set. The Keras evaluate function reports a test loss of 0.9459 and a test accuracy of 0.4911, meaning 

that at the default decision threshold of 0.5 the classifier correctly labels slightly less than half of the test images. 

To obtain a more detailed view of the behaviour on each class, we compute additional metrics and construct the 

confusion matrix, ROC curve, and precision–recall (PR) curve, as described in Section 3.3. 
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4.1. Performance Results Using the Dataset   

Provide the performance result of your work. An example has been provided below: 

 The quantitative performance of the proposed model on the test subset (169 images) is summarised in 

Table 1. Here, the positive class is dirty, and the negative class is clean. From the confusion matrix, the numbers 

of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are TP = 51, TN = 32, 

FP = 69, FN = 17. Using these values, the overall accuracy, precision, recall, specificity, and F1-score are 

computed according to the formulas in Section 3.3. The ROC–AUC is obtained from the ROC curve. 

 

Table 1. Performance of the proposed model on the solar panel dust test set. 

Metric Value(%) 

Accuracy 49.11 

Precision (dirty class) 42.50 

Recall / Sensitivity 75.00 

Specificity (clean class) 31.68 

F1-score (dirty class) 54.26 

ROC–AUC 71.12 

 

 

 The corresponding confusion matrix is visualised in Figure 2. Among the 101 clean panels, only 32 are 

correctly classified as clean, while 69 are misclassified as dirty. Among the 68 dirty panels, 51 are correctly 

classified, and 17 are incorrectly labelled as clean. This distribution matches the class-wise recall reported by the 

classification report: recall for the clean class is 0.32, whereas recall for the dirty class reaches 0.75. 
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Figure 2. Confusion matrix of the proposed model on the solar panel dust test set. 

 To assess threshold-independent discriminative ability, the ROC curve and precision–recall curve are 

plotted in Figure 3 and 4, respectively. The ROC curve in Figure 3 yields an area under the curve (ROC–AUC) 

of 0.7212, showing that the model is able to rank dirty panels ahead of clean ones substantially better than random 

guessing, even though the fixed-threshold accuracy is modest. 
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Figure 3. ROC curve. 

 The precision–recall curve for the dirty class in Figure 4 illustrates the trade-off between precision and 

recall as the decision threshold varies. At low thresholds, recall is high, but precision drops below 0.5, reflecting 

many false positives (clean panels predicted as dirty). As the threshold increases, precision improves at the cost 

of reduced recall. This behaviour is consistent with the confusion matrix analysis, where the model favours 

detecting dirty panels but struggles to avoid mislabeling clean ones. 

 

 

Figure 4. Precision–recall curve. 
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 Taken together, Table 1 and Figures 4–6 show that the proposed lightweight model has a meaningful 

ability to distinguish dirty panels from clean ones in terms of ranking (ROC–AUC), but its operating point at a 

0.5 threshold leads to many false alarms, which depresses accuracy and specificity. 

4.2. Discussion 

 This subsection provides an in-depth discussion of the obtained results and analyses the behavior of the 

proposed model using both quantitative metrics and explainable AI visualizations. 

 Before everything else, the training curves in Figure 1 clearly exhibit a strong unfairness towards very 

high training accuracy (≈0.98) on the one hand, and significantly lower and unstable validation accuracy (0.37–

0.72) on the other. The training error continually decreases to below 0.05, but the validation error starts increasing, 

indicating that the network is overfitting on the training data even though data augmentation is applied. This is 

expected since the custom-designed architecture is relatively large compared to the dataset. Early stopping/lr 

scheduling policies can alleviate vel but not completely remove such overfitting.  

 The test results in Table 1 confirm this limitation. While the ROC–AUC of 72.12% shows that the model 

has learned some useful discriminative structure, the overall accuracy of 49.11% and the low specificity of 31.68% 

demonstrate that the classifier frequently mislabels clean panels as dirty. From a maintenance perspective, such 

behaviour leads to a conservative system that rarely misses truly dirty panels (recall 75.00%) but generates many 

false positives and, consequently, unnecessary cleaning operations. Depending on the application scenario, this 

trade-off might or might not be acceptable; it suggests that threshold tuning or cost-sensitive training could be 

explored in future work. 

 The asymmetry is further highlighted by the confusion matrix in Figure 2 and the PR curve in Figure 4. 

Since the model over-classifies the dirty class, precision is moderate even for high recall values. This behavior is 

more noticeable in the tail of the PR curve at recall values close to 1.0 with precision dropping to less than 0.4. 

To achieve a more balanced performance, extra regularization and/or further architectural simplifications may be 

needed in conjunction with gathering more clean panels with challenging lighting and background conditions 

environment samples. 

 To get a sense of the model's decisions, Grad-CAM and LIME are run on a few test images in each 

class. Figure 5 displays a Grad-CAM for the true positive dirty panel. The heatmap of the last convolutional 

layer focuses on the central module cells, which contain visible dust and darker lines, and the overlay shows 

that these areas have the highest contribution to the dirty prediction. This coincidence of the highlighted regions 

with the dust locations as perceived by humans indicates that in correct predictions, the model is frequently 

basing its decision on useful visual evidence.  
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Figure 5. Grad-CAM triptych. 

 Figure 6 presents a LIME explanation for another example. The super-pixels outlined in yellow 

correspond to regions that LIME identifies as having a strong positive contribution to the dirty prediction. These 

regions largely coincide with darker cells and structural patterns on the panel surface. For correctly classified 

dirty panels, this again suggests that the model focuses on genuinely soiled areas. However, inspection of 

misclassified clean images (not shown here) reveals that LIME sometimes highlights super-pixels along high-

contrast edges, reflections, or shadows that superficially resemble dust, indicating that the model can be misled 

by such artefacts. 

 

 

Figure 6. LIME two-part graph. 
 

 In summary, the quantitative results and XAI visualizations demonstrate that the lightweight proposed 

Inception model successfully captures relevant dust-related features on the solar panels, especially for obviously 

dirty scenarios, but it surprisingly also reveal several challenges in consistently classifying clean solar panels. 

These results suggest multiple avenues for future work, including development of an attention mechanism that 

effectively suppresses background edges and reflections, stronger regularization, and larger dataset with more 

variations in lighting conditions and panel types. These problems are further discussed in the conclusion and 

future work section. 
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4.3. Fair Comparison with Other Deep Learning Models 

 To fairly position the proposed residual depth-wise separable lightweight Inception model against other 

deep learning approaches, it is important to recognise both the differences in task formulation and data and the 

constraints imposed in this coursework. In this work, a custom binary classifier is trained from scratch on a 

relatively small solar panel dust dataset (539 training, 134 validation, 169 testing images) using only bottleneck 

(1×1) and spatially separable (1×3 / 3×1) convolutions. Under these constraints, the best checkpoint achieves a 

test accuracy of 49.11%, with a precision of 0.42, recall of 0.75 and F1-score of 0.54 for the dirty class, and a 

ROC–AUC of 0.72. As discussed in Section 4.2, the model clearly overfits the training data but still learns a non-

trivial ranking between clean and dirty panels. This performance is not competitive in absolute terms with state-

of-the-art image-based dust detectors, but the comparison below highlights why such a gap is expected and how 

the present work remains useful as a lightweight, interpretable baseline. 

 Alatwi et al. [4]tackled a conceptually similar problem—binary classification of panel images into clean 

and dusty—but relied exclusively on pre-trained CNNs as feature extractors. They evaluated 20 popular 

architectures (e.g. VGG, ResNet, EfficientNet, DenseNet) on a dataset of over one thousand images and trained 

a linear SVM on the deep features of each network. Their best configuration, DenseNet-169 + linear SVM, 

achieved an accuracy of about 86.79%, with MobileNet and other models also reaching mid-80% accuracy. 

Compared to these results, the accuracy of the proposed coursework model is much lower. However, this 

difference is largely explained by (i) the use of ImageNet pre-training in[4], which provides rich generic feature 

representations before fine-tuning; (ii) a larger and more diverse training set; and (iii) the absence of strict 

architectural constraints. In contrast, the coursework model is intentionally small (~0.5M parameters) and trained 

from scratch on a smaller dataset. More importantly, [4]treat the CNNs as black-box feature generators and do 

not integrate any internal attention mechanism, whereas the present work explicitly designs a convolution-only 

attention block and later analyses its behaviour using Grad-CAM and LIME. Thus, while the raw accuracy is 

lower, the coursework contributes an interpretable, resource-constrained alternative that is more aligned with the 

assignment specification. 

 Alçin et al. [3]proposed SolPowNet, a custom CNN built specifically for solar panel dust classification. 

Like the network in this coursework, SolPowNet is trained end-to-end on panel images (502 clean, 340 dusty), 

but it uses a deeper and more flexible architecture without being restricted to only bottleneck and separable 

convolutions. On their dataset, SolPowNet achieves a test accuracy of 98.82% and an F1-score above 0.98, clearly 

outperforming large pre-trained baselines such as AlexNet, VGG16/19, ResNet50 and even InceptionV3. In other 

words, SolPowNet shows that a carefully designed custom CNN can surpass heavy pre-trained models both in 

accuracy and computational efficiency. Compared with SolPowNet, the model in this coursework is significantly 

lighter (roughly an order of magnitude fewer parameters) but also significantly less accurate. A fair interpretation 

is that this project is closer to an exploratory prototype under strong architectural and data constraints, whereas 

SolPowNet represents a production-ready design optimized via extensive experimentation. Another key 

distinction is interpretability: SolPowNet mainly reports aggregate metrics and qualitative examples, while the 

coursework explicitly integrates XAI tools to inspect the learned attention and failure cases. From this perspective, 

the proposed model trades accuracy for strict architectural simplicity and richer explainability analysis. 
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 Fair comparison with object-detection-based approaches must be even more cautious because they address 

a different task: localising dust or soiling patches rather than simply classifying an image. Gao and Li [5] 

improved YOLOv5s for detecting dust spots in UAV images of large solar farms. Their modified detector adds 

an extra prediction head and architectural tweaks, achieving very high recall, precision, and F1-scores (all close 

to or above 0.95) and a mean Average Precision around 0.95 on their test set. Naeem et al. [6]developed SDS-

YOLO, which integrates a CBAM attention module and dual detection heads for dust and bird droppings. On an 

aerial soiling dataset, SDS-YOLO delivers F1-scores above 0.75 for the dust class and around 0.70 for bird 

droppings, with mAP50 values in the mid-0.7 to high-0.7 range, while simultaneously reducing parameters by 

about 24% compared with the baseline YOLOv5. Both detectors dramatically outperform the coursework 

classifier in terms of detection quality, but they also: (i) operate on high-resolution UAV imagery rather than 

close-range panel photos; (ii) rely on strong pre-training on large datasets such as COCO; (iii) use more complex 

backbones and attention mechanisms (e.g. CBAM) that are not permitted in the coursework; and (iv) require more 

sophisticated training pipelines and computing resources. Moreover, neither [5] nor [6] integrates post-hoc XAI 

methods like Grad-CAM or LIME to explain individual detections. The attention used in SDS-YOLO is internal 

and not directly interpretable by end users. 

 The non-image-based deep learning works in the set of seven papers also provide context for fairness. 

Mokhtar and Shaaban’s ANN-based cleaning scheduler [2]and Shaaban et al.’s regression-tree dust estimator 

[1]reach high prediction accuracy on their respective tabular datasets and are highly practical for cleaning decision 

support. However, they do not perform visual dust recognition at all, and thus are complementary rather than 

competitive to the image-based classifier developed here. In particular, they cannot show where the dust lies on 

a panel or whether apparent performance loss is due to soiling or other factors (e.g. shading or module 

degradation), whereas an image-based approach with Grad-CAM and LIME can, in principle, provide that level 

of spatial insight. 

 In summary, a rough comparison to the models of deep learning suggests that our proposed coursework 

model is not competitive in terms of accuracy or F1-score, especially compared to pre-trained CNNs and state-

of-the-art YOLO versions trained on big datasets. But those models typically assume they can pre-train, use more 

data, and have fewer architectural constraints, and they almost never produce fine-grained, instance-level 

justifications. Contrarily, the current study toys with a very restricted, minimalist design consisting exclusively 

of bottleneck and spatially separable convolutions paired with a novel attention unit and explicit Grad-

CAM/LIME evaluation. The key takeaway, then, is not that we beat existing pre-trained deep models for PL 

images, but rather that we show how even a tiny, interpretable network performs when confronted with realistic 

data constraints, surfacing its strengths (good ranker, high recall for dirty panels, meaningful attention maps) and 

weaknesses (overfitting, low specificity). These results provide a foundation for future work wherein aspects of 

more highly performing pre-trained or attention-augmented models from the literature may be judiciously inserted 

into more powerful, yet still interpretable dust detection systems. 
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4.4. Comparison with Existing Literature 

Provide direct comparison of your work with other prior works. An example has been provided below: 

Work Input/Task Model type Pre-

training 

Main metrics Interpretability Relation to my work 

[1] Sensor&electrical 

data; dust level 

estimation 

Regression-

based dust 

estimation 

unit (fine 

tree and 

others) 

No High dust-level 

estimation 

accuracy; effective 

cleaning decision 

support 

No explicit 

XAI 

Data-based dust 

estimation; 

complementary, non-

visual (no image-

based dust detection) 

[2] Sensor&electrical 

data; cleaning 

decision support 

ANN-based 

cleaning 

decision 

model 

(regression / 

scheduling) 

No High correlation 

with expert 

decisions; reduced 

energy loss and 

cleaning cost 

No explicit 

XAI 

ANN cleaning 

scheduler; non-

visual, 

complementary 

[3] Near-field panel 

images; binary 

Custom 

CNN 

classifier 

(SolPowNet) 

No Test accuracy ≈ 

98.8%, F1-

score>0.98 

Limited 

qualitative 

examples; no 

formal XAI 

analysis 

 

Same task (clean vs 

dusty); strong custom 

CNN baseline 

[4] Near-field panel 

images; binary 

clean vs dusty 

Pre-trained 

CNN feature 

extractors 

(VGG, 

ResNet, 

MobileNet, 

DenseNet, 

etc.) + SVM 

 

Yes Best: DenseNet-

169 + SVM, 

accuracy ≈ 86.8%; 

several models in 

mid-80% range 

Can be 

combined with 

post-hoc XAI; 

not core focus 

 

Same task; heavy 

ImageNet 

backbones; focuses 

on transfer learning 
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[5] UAV aerial 

images of 

PV plants; 

dust spot 

detection 

Improved 

YOLOv5 

object 

detector 

with extra 

prediction 

head 

Yes Precision/recall/F1 

≳ 0.95; mAP ≈ 

0.95 

No Grad-

CAM/LIME; 

internal 

feature maps 

only 

Different task: 

detection and 

localisation of dust 

regions from UAV 

images 

[6] UAV aerial 

images; 

dust&bird 

droppings 

detection 

SDS-

YOLO 

(YOLOv5 

+ CBAM 

attention + 

dual 

detection 

heads and 

pruning) 

Yes Dust F1>0.75; bird 

droppings F1 ≈ 

0.70; mAP50 in 

mid–high 0.7 

range 

Internal 

CBAM 

attention, not 

turned into 

XAI plots 

Different task: multi-

class soiling detection 

on aerial images 

My 

work 

Near-field 

panel 

images; 

binary 

clean vs 

dirty 

Residual 

depth-wise 

separable 

lightweight 

Inception 

classifier 

with 

custom 

conv-only 

attention 

No Test accuracy 

49.11%; precision 

0.42; recall 0.75; 

F1-score 0.54; 

ROC–AUC 0.72 

Explicit Grad-

CAM and 

LIME 

explanations; 

custom conv-

only attention 

Binary classifier 

under strong 

architectural 

constraints; focuses 

on lightweight design 

and XAI rather than 

SOTA accuracy 

 

 To provide a direct comparison between the proposed model and prior deep learning approaches, it is 

necessary to consider differences in input modality, task formulation, model size, and training regime. In this 

coursework, the proposed residual depth-wise separable lightweight Inception network is a binary image classifier 

that distinguishes clean from dirty solar panels. It is trained from scratch on a relatively small near-field image 

dataset (539 training, 134 validation, and 169 testing samples), and is strictly constructed from bottleneck (1 × 1) 

and spatially separable (1 × 3 / 3 × 1) convolutions with a custom convolution-only attention block.  
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 Under these constrained conditions, the best checkpoint achieves a test accuracy of 49.11%, a precision 

of 0.42, a recall of 0.75 and an F1-score of 0.54 for the dirty class, with a ROC–AUC of 0.72. As discussed earlier, 

this reflects clear overfitting and modest overall performance, but also a non-trivial ability to rank dirty panels 

ahead of clean ones. 

 In contrast, some of the prior works do not use images at all but instead focus on data-driven dust 

estimation and cleaning decisions. Shaaban et al. [1] proposed a data-based dust estimation unit for PV panels 

using regression models trained on electrical and environmental measurements. Their best “fine tree” regressor 

achieves high accuracy in estimating dust levels and can reliably trigger cleaning events when a threshold is 

exceeded [1]. Mokhtar and Shaaban [2], [7] further designed an ANN-based cleaning approach that takes panel 

output, irradiance, and temperature as inputs to estimate dust accumulation and schedule cleaning only when 

necessary. Their case study shows that such an ANN-driven strategy can significantly reduce energy loss and 

cleaning costs compared to routine cleaning [2], [7]. These models are highly effective for cleaning scheduling, 

but they do not perform visual dust recognition and cannot show where dust is located on the panel surface. From 

the perspective of this coursework, they address a complementary problem: they optimise maintenance policies 

based on sensor data, whereas the current work explores an image-based CNN under strict architectural 

constraints. 

 Among image-based classifiers, Alçin et al. [3] and Alatwi et al. [4] are the closest to the present work. 

Alçin et al. [3] proposed SolPowNet, a custom CNN architecture designed specifically for classifying panel 

images into clean or dusty categories. SolPowNet is trained end-to-end on a dataset of 502 clean and 340 dusty 

panel images and achieves a test accuracy of 98.82% and an F1-score above 0.98, clearly outperforming standard 

pre-trained networks such as AlexNet, VGG16/19, ResNet50 and InceptionV3 evaluated on the same data [3]. 

The network is also computationally efficient, with significantly fewer parameters and lower inference cost than 

these large backbones. Compared with SolPowNet, the model in this coursework is even more constrained in its 

building blocks (only 1 × 1 and separable convolutions, with a shallower depth) and is trained on fewer samples. 

As a result, its accuracy is much lower. A fair interpretation is that SolPowNet represents a mature, performance-

optimised custom architecture suitable for deployment, whereas the coursework model is an exploratory prototype 

designed primarily to satisfy coursework constraints and to support explainability analysis. Another important 

difference is that SolPowNet mainly reports aggregate metrics and qualitative predictions, while the current work 

explicitly integrates Grad-CAM and LIME to obtain instance-level visual explanations for correct and incorrect 

classifications. 

 Alatwi et al. [4] addressed almost the same task as this coursework—binary dust detection from panel 

photographs—but took a different modelling strategy. They evaluated twenty state-of-the-art pre-trained CNNs 

(including VGG, ResNet, MobileNet, EfficientNet, and DenseNet) as fixed feature extractors and trained a linear 

SVM classifier on their deep features. On a dataset of over one thousand images, the best configuration 

(DenseNet-169 features plus a linear SVM) achieved an accuracy of 86.79%, with several other backbones also 

reaching accuracies in the mid-80% range [4]. Compared with these numbers, the 49.11% test accuracy of the 

coursework model is clearly much lower. This gap is largely explained by the use of ImageNet pre-training and 

high-capacity backbones in [4], as well as a larger and more diverse dataset.  
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 The models in [4] also do not face the strict architectural restrictions imposed in this coursework. On the 

other hand, the pre-trained CNNs in [4] are primarily used as black-box feature generators; internal attention 

mechanisms are not explicitly designed, and interpretability is limited to post-hoc tools if used. In contrast, the 

coursework model is intentionally tiny (around 0.5M parameters), built only from the allowed convolutional 

operations, and explicitly coupled with Grad-CAM and LIME to study how its custom attention module focuses 

on dusty regions and where it fails on clean panels. 

 Object-detection-based approaches, such as those from Gao and Li [5] and Naeem et al. [6], solve a related 

but different task: they localise soiling or dust patches in images, often captured from unmanned aerial vehicles 

(UAVs), instead of simply classifying an entire panel as clean or dirty. Gao and Li [5] proposed a deep learning 

method based on an improved YOLOv5 detector, adding an extra prediction head and architectural refinements 

tailored to PV plants seen from drones. Their model achieves very high detection performance on UAV imagery, 

with precision, recall, and F1-scores close to or above 0.95 and a mean Average Precision around 0.95 on their 

test set [5]. Naeem et al. [6] developed SDS-YOLO, which integrates a Convolutional Block Attention Module 

(CBAM) and dual detection heads to separately detect dust and bird droppings on panels. On an aerial soiling 

dataset, SDS-YOLO attains F1-scores above 0.75 for the dust class and around 0.70 for bird droppings, with 

mAP(50) values in the mid-0.7 to high-0.7 range, while simultaneously reducing the number of parameters by 

about 24% compared with the baseline YOLOv5 [6]. In absolute terms, these detectors far surpass the coursework 

classifier in their respective detection tasks. However, they rely on high-resolution UAV imagery, pre-trained 

YOLO backbones, more complex attention modules (e.g. CBAM, which is not permitted in this coursework), and 

more sophisticated training pipelines and computational resources. Moreover, although SDS-YOLO uses internal 

attention, neither [5] nor [6] incorporates post-hoc explainability techniques such as Grad-CAM or LIME to 

provide human-readable explanations for individual detections. 

 Overall, these comparisons show that the proposed coursework model is not competitive in raw accuracy 

or F1-score when placed alongside pre-trained CNN feature extractors [4], high-capacity custom architectures 

like SolPowNet [3], or attention-enhanced YOLO detectors [5], [6]. This performance gap is expected given the 

smaller dataset, the absence of pre-training, and the strict architectural limitations. The main contribution of the 

present work lies instead in its lightweight and interpretable design: it explores how a very small, constraint-

driven CNN with a custom convolution-only attention block behaves under realistic data limitations, and how its 

decisions can be analysed via Grad-CAM and LIME. In particular, the model still provides useful ranking ability 

(ROC–AUC 0.72) and high recall for dirty panels, while its confusion matrix and XAI visualisations clearly 

expose weaknesses such as low specificity and susceptibility to reflections and background structures. These 

insights form a basis for future work in which elements from stronger pre-trained or attention-based models in 

the literature can be selectively incorporated into new architectures that are both more accurate and remain 

interpretable for solar panel dust detection. 
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5. CONCLUSION, LIMITATION, FUTURE WORK 

 This coursework explored image-based dust detection on photovoltaic panels using a custom residual 

depth-wise separable lightweight Inception model with a convolution-only attention mechanism and XAI tools. 

The model was built entirely from bottleneck 1×1 and spatially separable 1×3/3×1 convolutions and trained from 

scratch on a small near-field image dataset for binary classification (clean vs. dirty). On the test set, it achieved 

an accuracy of 49.11%, with precision 0.42, recall 0.75 and F1-score 0.54 for the dirty class, and ROC–AUC 0.72. 

Although the overall accuracy is modest, the model shows a tendency to prioritize detecting dirty panels (higher 

recall), which is desirable for maintenance, and Grad-CAM/LIME visualizations indicate that, in many correct 

predictions, the network focuses on dust-relevant regions of the panel surface. 

 However, several limitations remain. The dataset is relatively small and not highly diverse in terms of 

locations, lighting, panel types, and soiling patterns, which leads to clear overfitting and low generalization to 

unseen data. The architecture, while lightweight, is still expressive relative to the data size, and only limited 

hyperparameter tuning and regularization were performed within the coursework time frame. Evaluation is based 

on a single train/validation/test split, without external validation, and the XAI analysis is mainly qualitative, 

relying on a limited number of Grad-CAM and LIME examples. In addition, the current work focuses only on 

binary classification and does not address other practically important tasks such as multi-class soiling recognition 

or localization of dust regions. 

 Future work should first expand and diversify the dataset and consider multi-class labels for different 

soiling types, which would help both accuracy and robustness. On the modelling side, systematic ablation studies 

and stronger regularization (e.g. Heavier augmentation, dropout, weight decay) could be used to reduce overfitting, 

and lightweight pre-training or transfer learning strategies might be explored while still keeping the parameter 

count low. The XAI component could be extended with additional methods (e.g. Integrated Gradients or SHAP 

for images) and more quantitative evaluation of explanation quality, for example, by comparing highlighted 

regions with manually annotated dust areas. Finally, integrating the proposed classifier into a broader decision-

support framework (combining image-based outputs with sensor-based dust estimators) and extending it towards 

detection or segmentation of soiling in UAV imagery would move the approach closer to real-world deployment 

while keeping interpretability as a central design goal. 
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