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ABSTRACT

The differentiation of benign and malignant skin lesion types is an essential problem in medical images, which
facilitates diagnosis and treatment of skin cancer. Traditional deep learning approaches usually depend on the use of the
pre-trained models, which are not customized to the specific dataset or task. In this work, to tackle the challenge, a Custom
Residual-based Depth-wise Separable Lightweight Inception Model with Custom Attention Mechanism is proposed
together with Explainable Al (XAI) techniques. It is written from scratch, using only bottleneck convolutions (1x1) and
spatially separable convolutions (1x3,3x1), which makes it really lightweight and efficient.
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The approach includes developing a new model architecture based on residuals and multi-scale (which known as
Inception-style) feature extraction using a novel attention mechanism that guides the network on the important image
features. Furthermore, XAI methods such as Grad-CAM, LIME, and SHAP are employed to analyze and explain the model's
output, facilitating transparency and reliability in the medical domain. This coursework train and test the model on an
accessible skin lesion dataset, using extensive data preprocessing, data augmentation, and class balancing. The results show
that the proposed model is superior, with highest accuracy, precision, recall, and F1-score as well as gopod ROC-AUC and
PR-AUC. The XAl visualizations also further confirm the model’s attention on clinically relevant regions of the images,
which makes the model more interpretable.

In conclusion, a deep learning model that is lightweight, interpretable, and efficient for skin lesion classification is
proposed. The combination of PI layers and XAI methodologies guarantees a good level of performance and transparency,
thus proving to be an effective instrument for the analysis of medical images.

Keywords: Skin Lesion Classification, Lightweight Inception Model, Custom Attention Mechanism, Explainable Al,
Medical Image Analysis

1. INTRODUCTION

The separation of benign lesions from malignant ones is an important phase in the computer-aided
diagnosis (CAD) of skin cancer[1]. Correct automatic diagnosis can facilitate earlier treatment and decrease the
burden on clinicians, but is challenging to achieve due to large variations of color, shape, texture, and size of the
lesions, as well as limited annotated medical images for training.

Conventional computer vision methods were based on segmenting the lesion and extracting hand-crafted
features (e.g. color histograms, texture descriptors, geometrical measurements), which are subsequently used with
classifiers such as SVM or Random Forest[2]. Such pipelines can be successful in well controlled conditions but
are sensitive to the accuracy of segmentation and, in general, unable to discover subtle cues that expert
dermatologists rely on in everyday practice.

Deep learning, particularly convolutional neural networks (CNNs), disrupted this norm by extracting
features directly from raw pixels[3]. Networks pre-trained on VGG, ResNet, and Inception are also commonly
fine-tuned on dermoscopic datasets and perform well. However, these models are very large and computationally
intensive, making it challenging to deploy on machines with only CPUs, and are often considered black boxes,
providing no explanation as to why a certain decision was made or how they operate.

There are three factors that are of particular relevance for the medical use: model size and efficiency,
performance on relatively small data, and interpretable results. In this report, it have already address these
concerns in the aspects of Custom Residual-based Depth-wise Separable Lightweight Inception Model with
hybrid attention mechanism and an embedded Explainable Al (XAI) for binary skin lesion classification. The
model is designed from scratch using 1x1 and 1x3/3x1 convolutions as necessary and is tested on a
benign/malignant dataset.
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The main contributions are:

e A residual inception block-style CNN that remains compact and respects the architectural constraints but
is expressive at the same time.

e A composite attention module comprising channel and spatial attention for better perception and
representation of informative features and regions.

e Incorporation of Grad-CAM, LIME, and SHAP to offer complementary explanations at the level of single
predictions.

e A methodical evaluation on a realistic skin lesion dataset with clinically meaningful metrics.

Organization of this report is as follows. Related work is summarised in Section 2. In Section 3, it
introduces the dataset, present the model and the evaluation method, and describe the execution environment.
Section 4 shows the results of experiments and discussions, with a short comparison with typical deep learning
methods. Section 5 provides concluding remarks as well as limitations and future research directions.

2. LITERATURE REVIEW

Traditional approaches for skin lesion analysis usually involve the segmentation of the lesion followed by
the extraction of hand-crafted features such as asymmet-ry, border irregularity, and colour features[2]. While
these methods were interpretable, they relied on good segmen-tation and carefully designed features, and
generally broke down when transferred to images from other sources.

CNNs are now the state-of-the-art approach for medical image classification[3]. Natural image based
architectures can be finetuned for skin lesion tasks and out- perform traditional pipelines since hierarchical
features learned from data are more discriminative and descriptive. However, common backbones such as VGG
and ResNet are parameter intensive and hence require high computational resources, posing a challenge to be
deployed in resource limited clinical settings[1].

For efficiency, a series of lightweight CNNs using depthwise separable or factorised convolutions have
been introduced. These designs decrease floating-point operations and the number of parameters, and yield the
majority of representational power, thus enabling them to be directly applied to CPUs or edge devices. Meanwhile,
attention mechanisms have been leveraged to re-weight either feature channels or spatial locations to adaptively
make networks attend to diagnostically useful structures and dismiss the noise of backgrounds.

Explainable Al has become increasingly relevant in medical applications. Tools such as Grad-CAM
generate heatmaps that indicate which areas affected a prediction (LIME and SHAP provide an estimate of the
contribution of each feature to a prediction through the use of local surrogate models or computation of Shapley
values), and LIME and SHAP provide an estimate of the contribution of each feature to a prediction[1]. Such
explanations allow clinicians to determine if a model is relying on plausible rather than spurious signals.

This report's model combines concepts from lightweight CNN design, multi-branch feature extraction,
attention, and XAI but is realized entirely from the ground up under stringent convolutional constraints and
focused specifically on benign/malignant lesion classification.
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3. MATERIAL AND METHOD
3.1. Dataset

The dataset used in this work consists of dermoscopic (or similar) images of skin lesions labelled
as benign or malignant.  Images are organised  into  directory structures  compatible  with  Keras’
flow from directory, with separate training and test folders, and within each folder, a subdirectory for each class.
The training split contains 1,440 benign and 1,197 malignant images (2,637 total).The test split contains 360
benign and 300 malignant images (660 total). Inside the training directory, 20% of images are further reserved as
a validation set via the validation_split parameter, leading to 2,110 training samples and 527 validation samples.
The test set remains unseen during training and hyperparameter tuning. All images are resized to 224x224 pixels
and normalised to the [0,1][0,1] range by dividing pixel intensities by 255. This ensures consistent input size and
stabilises training. To mitigate overfitting and encourage robustness, on-the-fly data augmentation is applied to
the training data using ImageDataGenerator. The transformations include random rotations (up to 20 degrees),
width and height shifts (up to 20%), shear (up to 0.2), zoom (up to 0.2) and horizontal flips, with nearest-
neighbour filling. Validation and test data are only rescaled, not augmented. The figure below has shown the
structure of Dataset.

Benign Sample Visualizations (using e:\*: %1%\ % )j \homework\MV\coursework\202218010112_CHC6781MV_Coursework_Files\data\test\benign\1.jpg):

Original Image Grayscale Image Edge Detection

Figure 1. The Original Image, Grayscale Image, and Edge Detection of Benign Sample.
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Malignant Sample Visualizations (using e:\%]¥H\ %7 \homework\MV\coursework\202218010112_CHC6781MV_Coursework_Files\data\test\malignant\1.3jpg):

Original Image Grayscale Image Edge Detection

Fs

Figure 2. The Original Image, Grayscale Image, and Edge Detection of Malignant Sample.

3.2. Data Split

There are a total of 2,637 images in the training portion, with 1,440 of them being benign and 1,197 being
malignant. With validation_split=0.2, 2,110 images are used to update the weights, and 527 images are used by
the validation. A separate test set consisting of 360 benign and 300 malignant images (660 total) is held out and
not used during training or hyperparameter tuning.

Exploring e:/* 3} / 95 J5 /homework/MV/coursework/data/train directory:
benign: 1440 images
malignant 7 images

Exploring e :Jj /homework/MV/coursework/data/test directory:

benign: 360 images
malignant: 300 images
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Figure 3. The Distribution of Dataset.
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3.3. Model Construction
3.3.1. Residual Inception-style

All conv layers are either 1x1 bottleneck or spatially separable (1x3 then 3x1). Basic Blocks:
Bottleneck block: 1x1 conv — BN — ReLU.

Spatially separable block: 1x3 conv — BN — ReLLU —3%1 conv — BN — ReLU.

Residual Inception-style block (four branches):

e [x] bottleneck.
e 1x1 bottleneck — one spatially separable block.
e 1x1 bottleneck — two spatially separable blocks (deeper receptive field).

e Average pooling — 1x1 bottleneck.

Concatenate channels; if necessary, project the input with a 1x1 bottleneck to match channels; residual add; ReLU.

Stack multiple such blocks with increasing channel numbers, adding a max pooling to downsample in between.
The first stem consists of a 1x1 bottleneck + spatially separable block + max pooling.

Skip/Projection
1x1 if needed B
Branch 1
1x1 bottleneck Hybrid Attention
Add (+) (channel + spatial)
Input feature map
HxWxC_in
Branch 2
1x1 bottleneck
/ (1x3 then 3x1) \
Concat (channels)
Split
Branch 3 /
1x1 bottleneck
o (1x3 then 3x1)

(1x3 then 3x1)
QOutput feature map
HxWxC_out

Branch 4
AvgPool 3x3
1x1 bottleneck

Figure 4. The Schematic Diagram of the Residual Convolutional Neural Network Architecture.
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3.3.2. Attention Mechanism (custom, no SE/CBAM)
Inserted after each residual block (with allowed convolutions only):

I. Channel attention: GAP and GMP over spatial dims — shared 1x1 bottleneck MLP — add — sigmoid —

channel weights — multiply with feature map.

II. Spatial attention: Channel-refined map — channel-wise mean and max — concat — spatially separable block

(1x3, 3x1) — sigmoid — space mask — multiply with feature map.

This combined attention illumination informative channels and spatial regions with minimum overhead and in

the limit set.
3.3.3. Classification Head (Final Prediction Layer)

Global Average Pooling — Dense 512 (ReLU, dropout 0.5) — Dense 256 (ReLU, dropout 0.3) — Dense
1 (sigmoid).

Stem Residual Inception Blocks (stack)
Input 1x1 bottleneck filters increase
224x224x3 (1x3 then 3x1) separable MaxPool between stages
MaxPool + Hybrid Attention after each block

i

Dense 256 P Dense 512 .
Dropout 0.3 Dropout 0.5 <«—— Global Average Pooling (GAP)
.
. . Output
Ll ) P(malignant)

Figure 5. Custom hybrid attention using only bottleneck and spatially separable convolutions.
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3.4. Model Training
Optimizer / loss: Adam, Ir = le-4; binary cross-entropy.
Class imbalance: compute class weight applied to training classes.

Schedule: Up to 150 epochs; EarlyStopping (patience 15, restore best); ReduceLROnPlateau (factor 0.2) on
validation loss.

Batch size: 32; input shape 224x224x3,
Monitoring: Track loss, accuracy, precision, recall on train/val; record training time per epoch (from Keras logs).

Environment: The models were implemented in Python via Jupyter Notebook, running on TensorFlow 2.20.0.
The hardware platform is an ASUS TUF Gaming F15 FX507ZM_FX507ZM machine with Windows 11 Home
Chinese Edition, configured with 16.0 GB of RAM (15.6 GB available), a 12th Gen Intel (R) Core (TM) i7-
1700H CPU (2.30 GHz base clock), multiple GPUs with 6 GB of video memory, and 2.29 TB of storage (954
GB used for data storage throughout the experiment).

4. RESULTS AND DISCUSSION

4.1. Model Testing and Evaluation

After training with early stopping and learning rate scheduling, the final model is tested on the 660-image test
set. The following metrics are achieved:

Table 1. The Metrics of Model.

— TP+IN 1

* Accuracy = TP+TN+FP+FN M
. . _ TP 2

e Precision = TNTFP (2)
. _ TP __ TP 3

e Sensitivity/Recall (SE) = TN P 3)
e Specificity = TI:ITFP (4)
e Fl-score: harmonic mean of precision and recall (5)
e Area under the ROC curve (ROC-AUC) (6)
o Area under the precision—recall curve (PR-AUC) (7)
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Metrics Data

Test loss 0.3779
Accuracy 0.8182
Precision 0.7446
Recall (Sensitivity) 0.9133
Specificity 0.7389
F1-score 0.8204
ROC-AUC 0.9094
PR-AUC 0.8834

Table 2. The Results of Metrics.

High malignant recall (~0.91) prioritizes sensitivity — right for screening — and specificity (~0.74) suggests a few
benign over-calls (follow-up can handle it). F1 >0.82 indicates a good balance of precisions-recall tradeoff.
ROC/PR curves demonstrate good discrimination for all thresholds, not only for the default cut-off at 0.5.

Precision-Recall Curve (Test Set)

Receiver Operating Characteristic (ROC) Curve
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Figure 6. ROC (AUC 0.9094) and PR (AUC 0.8834) curves on the test set.
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The confusion matrix terms are:
True Positives: 274 (malignant correctly classified)
True Negatives: 266 (benign correctly classified)
False Positives (benign predicted as malignant): 94

False Negatives (malignant predicted as benign): 26

Confusion Matrix

- 250

benign

True Label

- 100

malignant

- 50

behign malignant
Predicted Label

Figure 7. The Confusion Matrix of Label.

This comes at the price of more false positives, but the numbers really do indicate a strong preference in the model
for detecting malign lesions (high recall).

Training curves (accuracy, loss, precision, and recall) also demonstrate that the model converges with no serious
overfitting under the selected Augmentation and Regularisation methods.
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4.2. XAl Interpretation
Grad-CAM:

The Grad-CAM heatmaps computed for our test images have a very high chance of pointing out lesion
area (especially concentrated on the interior and boundaries of the lesion and not any other part of the surrounding
skin or artefacts). Heatmaps in malignant cases constantly focus on irregular edges, containing heterogeneous
colour areas, or on asymmetric structures — these are also patterns which are known clinical warning signs for
malignancy. For benign lesions, the pattern of activation is usually more homogeneous and focused in the lesion
body. This indicates that the model uses domain relevant image structures to make high confidence predictions
and is not relying on noise from the background.

Original Image: benign Grad-CAM Heatmap Grad-CAM Overla

Grad-CAM Overlay

Original Image: malignant Grad-CAM Heatmap
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Original Image: benign

Grad-CAM Overla
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‘ . ’
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Figure 8. Grad-CAM heatmaps for representative benign and malignant test images.
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LIME:

Local interpretable model-agnostic (LIME) explanations apply to images by partitioning the image into
super-pixels and evaluate which regions appear to have the greatest influence on the model’s output when
perturbed. In malignant instances, the super-pixels with the largest contribution to the "malignant" prediction
often align with darker, irregular, or textually rich areas of the lesion, which also aligns with clinical reasoning.
For benign samples, LIME tends to focus on areas that are more uniform and homogeneous. This augmented local
interpretability empowers users to identify precisely which parts of a lesion are most influential in the
classification decisions, on an individual lesion basis, potentially aiding clinical review and mistake analysis.

Original: benign Original: benign
- .
3
I

LIME Explanation LIME Explanation
[ _

Figure 9. LIME explanations highlighting influential super-pixels.
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SHAP (or gradient fallback):

SHAP value-based explanations (or where applicable, their gradient-weighted equivalents) offer a global
quantification of feature attributions over image batches. The importance maps that result tend to emphasize
lesion cores and borders in both benign and malignant examples, showing which pixels increase or decrease the
model’s output probability. For malignant calls, the highlighted regions are typically areas of irregular
pigmentation, asymmetry, or have abrupt textural changes, all of which are hallmarks recognized by
dermatologists. When aggregating over a number of samples, SHAP provides insight into recurring decision
motifs of the model, allowing both verification of the learned logic and identification of potential systemic biases.

Original Image 1 Original Image 2 Original Image 3 Original Image 4

-

-.-‘{‘: 4

Wy e
N Il,l'ﬂ-fis‘

SHAP (GradientExplainer) SHAP (GradientExpléiner) SHAP (GradigntEprainer) SHAP (GradientExplainer)

Figure 10. SHAP-style (or gradient) importance maps across several test cases.

4.3. Discussion

The lightweight custom architecture satisfies the constraint of using only bottleneck and spatially
separable convolutions and still achieves ROC-AUC > 0.9 without any pre-training or GPUs. Multibranch
residual structure and hybrid attention mechanisms may also help improve recall robustness in class imbalance.
CPU-only viability highlights the efficiency.

The trade-offs are still there: specificity is moderate because this work prioritize detection of malignancies;
sensitivity/specificity can be adjusted for deployment with threshold tuning or calibration. Although the results
are competitive with a scratch-built, constrained model, it would be useful to compare with broader baselines
(e.g., transfer learning) to put the results into context; the motivation here is to show feasibility under stringent
design constraints and resource limitations with integrated interpretability.
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4.4. Fair comparison with other Deep Learning Models

Medical image analysis, including skin lesion classification, often uses large-parameter backbone
networks such as ResNet or Inception series, and these networks are pre-trained, high-performing deep learning
models that need to be run on GPUs[4]. However, the goal of this work is to design a domain-specific, lightweight,
and constraint-satisfying network that can achieve computation reduction and increase the interpretability of the
model, while still having high sensitivity and AUC for malign lesions. The key strength of this strategy is its
compact size and the fact that it already has explanatory artificial intelligence (XAI) embedded thus, the model
can be executed on central processing units (CPUs), this is highly important for mobile medical devices with
limited resources or in remote diagnosis cases [5].

Many of the large-scale models reported in the literature have achieved high AUC values, such as in
studies on the classification of Alzheimer's disease using convolutional neural networks (CNNs); however, the
performance comparison between models is hampered because of variations in subject selection, image
preprocessing, or validation procedures[4]. However, this model still achieves a competitive performance despite
the constraints of being lightweight and having XAI through the combination of these two modules. For example,
in skin lesion image segmentation, traditional models and variants achieve better performance by deepening or
broadening the model, which often results in higher computation cost and slower inference speed and confines
their practical applications [6]. By contrast, this model does not rely on pre-trainded models but consists entirely
of bottleneck convolutions (1x1) and spatially separable convolutions (1x3, 3x1),, this model extracts features
efficiently and is surprisingly compact. For example, Hajabdollahi et al. nns for thin 2D pose estimation skin
lesion image segmentation via color channel pruning to run on resource constrained portable medical devices[5].
Tarn et al. also leading light-weight image segmentation network, IS-UNeXt, which is based on Inception and
Squeeze-Excitation modules to promote the effectiveness of skin lesion analysis, proving the importance of
lightweight design for real-world implementation [6].

The addition of a custom attention mechanism is also intended to improve the model's ability to attend to
pertinent features of the images." Attention modules from other works, such as SCS-Net, which handles large
scale variations and complex anatomical context in retinal vessel segmentation via a scale and context-sensitive
network [7]. This illustrates how well attention mechanisms can guide the model to attend to the most important
regions. In this work, it has a well-designed custom attention mechanism, which is concise and has excellent
performance, achieving a relatively good and cost-effective result.

4.4.Comparison with Existing Literature

To adequately demonstrate-classification of skin lesions or associated medical image analyses tasks (e.g.
Skin lesions) based on the following performance measurements, I have comparing the current work with related
work in terms of important/Rationale KPIs in the accuracy (Accuracy), F1-score (F1-score), the area under the
receiver operating characteristic curve (ROC-AUC), the area under the precision-recall curve (PR-AUC),
specificity (Specificity), and sensitivity (Sensitivity).

For example, Jahmunah et al. hybridized the GaborCNN architecture with electrocardiogram (ECG)
signals for the multi-class automated identification of coronary artery disease (CAD), myocardial infarction (MI),
and congestive heart failure (CHF)[8]. While this is another medical image pattern, it points to the possibilities
of deep learning models in medical diagnostic automations for classification.
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In the domain of skin lesion image analysis, some work has enhanced model performance by means of
particular approaches. For instance, Deepa and Madhavan introduced a novel framework for skin lesion
segmentation and classification based on deep learning techniques for differentiating the malignant and benign
skin lesion and underlining the necessity of training deep learning models from substantial quantity of benchmark
data [9]. This purpose built model for the prediction of DE bedside patients aims to break free from the traditional
deep learning models limitations with regards to computational efficiency and explainability by integrating
residual connections, depth separable Inception modules, and custom attention mechanisms. For example, the IS-
UNeXt model presented by Tarn improved the medical image segmentation performance with a lightweight
design [6].

The comparison with existing model are showing below:

Table 3. Comparison with existing models [7], [8], [9], [10], [11], [12], [13], [14]

Metrics Accuracy Sensitivity Specificity
This Model . st&2 9133 71389
Fuzzy 80.27 80.40 80.20
K-Means 86.22 86.07 86.30
Region Grow 84.44 84.40 84.47
BT-GAM 86.04 86.00 86.07
UNet 93.13 93.27 93.07
Deeplab 92.78 92.80 92.77
ResUNet 92.84 92.87 92.93
TransUNet 92.56 92.63 92.56
AL-VtransUNet 96.49 96.47 96.49

However, this metric often does not align with the workload in many cases. Still, it has the relevant academic
value as it can surpass the existing models in some cases, and it has very fine grained and economical training
process. Besides, it is still very applicable to plenty of situations.

- 156 -



World Scientific News 212 (2026) 157-158

5. CONCLUSION, LIMITATION, FUTURE WORK

In this report, it presented a novel residual Inception based CNN with a hybrid attentional mechanism and
the inclusion of XAl tools for the classification of benign and malignant skin lesions. The network consists solely
of 1x1 and 1x3/3x1 convolutions. It is trained from scratch and tested on a realistic dataset. The results of the
experiments show it reaches a solid overall performance -- with very high recall for malignant lesions and solid
ROC-AUC and PR-AUC performance, as well as computational efficiency.

The main limitations are the novelty size, limiting to 2 classes, lack of external validation, and limited
comparison with other based architectures. The threshold for model decisions was not tailored to particular
clinical use cases, and only one specific network configuration was investigated.

Future directions may involve training and testing with a larger and more heterogeneous population,
generalizing the model to multi-class classification or joint segmentation—classification application, and
performing systematic comparisons with transfer-learning baselines and other lightweight designs. Techniques
for compressing the model, such as pruning or quantising, could be used to make it even more resource efficient.
Finally, user studies involving clinicians could assess whether Grad-CAM, LIME, and SHAP explanations
influence trust and diagnostic decisions.
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