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ABSTRACT 

 The rapid growth of renewable energy adoption has heightened the need for accurate solar energy prediction to 

ensure grid stability, particularly in regions with high solar penetration. However, traditional forecasting methods relying 

on historical meteorological data often fail to address short term fluctuations caused by dynamic cloud movements, limiting 

real time adaptability. To overcome this challenge, this study proposes a deep learning framework integrating convolutional 

neural networks (CNNs) with attention mechanisms to predict photovoltaic (PV) output from radiance sky images.  
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 Two datasets capturing diverse sky conditions were used to evaluate three architectures: a baseline CNN, CNN with 

Squeeze-and-Excitation (SE) Attention, and CNN with Spatial Attention. The CNN with SE-Attention model significantly 

outperformed baseline models, reducing prediction errors and improving explanatory power, as validated by metrics 

including RMSE, MAE, and R². Gradient-weighted Class Activation Mapping (GradCAM) further demonstrated the 

model’s ability to prioritize meteorologically critical regions, such as cloud edges and solar disk areas, with distinct attention 

patterns for sunny and cloudy scenarios. The framework’s practical utility was enhanced through deployment in an 

interactive web-based Graphical User Interface, enabling real-time solar potential simulations for energy operators. By 

combining attention mechanisms with interpretable design, this work advances short-term solar forecasting accuracy while 

providing actionable insights for grid management. Future research directions include multi-modal data fusion and hybrid 

transformer-CNN architectures to improve robustness across diverse climatic conditions. 

Keywords: Solar energy prediction, Deep learning, Attention mechanisms, Grad-Cam, Sky image analysis. 

 

1. INTRODUCTION 

 In recent years, with the rapid growth of global energy demand and the improvement of environmental 

protection awareness, the application of clean energy, especially solar energy, has become the focus of global 

attention. With its renewable and clean nature, solar energy is seen as an important part of sustainable energy in 

the future [1]. Accurate solar power forecasting is critical to maintaining grid stability, especially in areas with 

high solar penetration, where grids need to respond in real time to fluctuations in solar radiation due to cloud 

cover or weather changes to avoid power supply disruptions due to sudden drop in sunlight [2]. 

 However, because solar power generation is dependent on the intensity and duration of sunlight, rapid 

changes in weather conditions make traditional forecasting methods challenging. Most of the traditional 

forecasting methods rely on historical meteorological data, but such methods are difficult to adapt to the rapidly 

changing weather conditions in time, especially the dynamic changes of cloud cover in a short period of time, 

resulting in limited real-time and flexible forecasting [3]. In order to address this challenge, deep learning 

technology has made significant progress in the field of image recognition and pattern recognition in recent years, 

making it possible to analyze weather conditions and predict solar radiation in real time using radiated sky images 

[4]. 

 Through real-time analysis of sky images, deep learning models can automatically identify cloud type, 

thickness, coverage, and other information, so as to provide dynamic and accurate data support for solar potential 

prediction. This image-based forecasting method has shown significant advantages over traditional methods, 

especially in response to short-term weather changes [5]. As illustrated in Figure 1, regions with higher solar 

penetration, such as California and New England, exhibit significantly higher error costs. Although the current 

correlation between error costs and solar penetration levels is relatively weak, the potential negative impacts of 

forecasting errors are expected to become more pronounced as the proportion of solar energy in the energy mix 

continues to increase [6]. Nowadays, ground-based sky imagery and deep learning models have gradually 

emerged as effective ways to address these short-term fluctuations, reducing uncertainty by providing fast short-

term forecasts. 
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Figure 1.  Costs of NAM Forecasts Errors in 2018 and 2019 by Wang et al. [6] 

 

 The improvement of model performance is inseparable from the support of high-quality and diverse 

datasets, which is one of the main challenges facing the field at present. To ensure the reliability of the model, a 

high-quality dataset representative of a wide range of atmospheric conditions is essential. Although a growing 

number of open-source sky imagery datasets are becoming available, these datasets vary in coverage, resolution, 

and quality control, and these factors are critical to training models with high generalization capabilities. 

Researchers are actively promoting the accessibility of data and the standardization of solar prediction datasets, 

which can help improve model generalization and support further research in energy meteorology and 

atmospheric sciences [7]. 

 Predicting solar energy potential by combining radiated sky imagery and deep learning technology, which 

can not only significantly improve the accuracy of prediction, but also help the grid achieve more efficient power 

management and dispatch, thereby ensuring the stability and reliability of power supply. This image-based 

prediction method has strong real-time, low cost, and high scalability, which is expected to bring new application 

prospects and technological innovation to the field of solar power generation. 

 With the rapid development of renewable energy across the globe, accurate prediction of solar power 

generation potential is critical for smart grids and energy management. To achieve this, many studies employ 

image-based deep learning models to analyze sky images for solar energy prediction. However, traditional 

methods often struggle to provide real-time, accurate forecasts under rapidly changing weather conditions, such 

as moving clouds [8]. Therefore, this study proposes a model combining Convolutional Neural Network (CNN) 

and attention mechanisms to automatically extract and enhance spatial features from irradiated sky images. By 

integrating these features, the fore casting model aims to correlate sky radiance data with photovoltaic (PV) output, 

providing efficient and accurate solar energy potential predictions under diverse weather conditions. 
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 The main goal of this research is to develop a deep learning model combining CNN with attention 

mechanisms for real-time prediction of solar energy potential from sky radiation images. To achieve this overall 

goal, this study focuses on a series of specific tasks, including data processing, model design and optimization, 

evaluation metric selection, and performance validation. First, this paper constructs a diverse sky image dataset 

covering different meteorological conditions, including sunny and cloudy days. To enhance robustness and reduce 

time-dependent biases, data preprocessing includes grouping by day blocks, shuffling, image normalization, and 

tensor conversion of PV output. Batch processing is applied to optimize training efficiency. Secondly, the paper 

designs a CNN-based architecture with integrated attention mechanisms to extract spatial features, such as cloud 

density and distribution patterns, and enhance the focus on relevant regions. These design choices enable the 

model to perform real-time and accurate predictions, particularly for short-term photovoltaic output under rapidly 

changing weather conditions. The model’s performance will be assessed using key evaluation metrics, including 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R²), and Explained 

Variance Score (EVS). These metrics will quantify prediction accuracy and generalization ability. Furthermore, 

comparative experiments with traditional persistence models will demonstrate the effectiveness of the nowcasting 

model, particularly under dynamic weather conditions. 

 This section introduces a CNN-based model integrated with attention mechanisms for real-time solar 

energy prediction, emphasizing its potential to enhance energy management and the key stakeholders who will 

benefit from advancements in accurate predictions of solar energy. 

 To facilitate a clearer understanding of the research's overall architecture, Figure 2 is a schematic 

representation depicting the key components of the research.  

 

Figure 2. Flow chart of research overview. 

 In recent years, with the rapid development of deep learning technology, the CNNs have achieved 

significant success in the field of image processing and have been increasingly applied to complex tasks such as 

weather prediction and energy management. However, standard CNN models may face challenges when dealing 

with complex atmospheric conditions and dynamic weather patterns, such as limited adaptability to spatial 

variations and reduced robustness under rapidly changing conditions. To address these limitations, this paper 

introduces a CNN-based model enhanced with attention mechanisms.  
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 The CNN layers extract spatial features such as cloud density and light intensity from sky images, while 

the attention modules emphasize relevant regions, improving the model's ability to handle dynamic weather 

scenarios and enabling accurate real-time prediction of solar energy potential.  

The potential contributions and practical implications of this research include: 

⚫ Accurate prediction of solar power potential by making solar energy systems smarter and more reliable by 

analyzing cloud distribution and light intensity in radiated sky images to provide round-the-clock real-time 

predictions. 

⚫ Optimize the management and deployment of solar energy in the grid through real-time prediction, reduce 

energy waste, and improve the stability of power supply. 

⚫ Provide real-time predictive support for smart grids, photovoltaic power generation systems, distributed 

energy management systems, etc., and enhance the adaptability of solar energy systems. 

⚫ Improve forecasting economics and scalability by reducing backup energy requirements and reduce overall 

operating costs through efficient data processing and predictive models. 

⚫ Provide technical support for green energy transition by promoting social trust and use of clean energy 

through efficient and convenient prediction tools. 

2. LITERATURE REVIEW 

 The application of deep learning in solar radiation prediction is becoming more and more extensive, and 

several research teams have proposed different model structures to improve the accuracy and timeliness of 

prediction. Feng and Zhang [9] proposed the SolarNet, a 20-layer deep CNN specifically designed for hourly 

prediction of global horizontal irradiance (GHI). Alani et al. [2] further researched the application of CNNs by 

developing a hybrid CNN-Multi-Layer Perceptron (MLP) model, which are used to extract spatial features from 

images, and MLP networks are used to explore complex relationships between image information, GHI, and 

different weather variables. Papatheofanous et al. [10] introduced a CNN-based Image Regression Module (IRM) 

for estimating short-term solar radiation from sky images. 

 In addition to CNN structures, more and more studies are trying to introduce time series information into 

predictive models to capture the dynamic changes in cloud cover and radiation. Paletta et al. [11] compared the 

effects of four deep learning models: CNN, CNN-Long Short-Term Memory (LSTM), 3D-CNN, and ConvLSTM, 

and the experimental results showed that recurrent neural networks containing time series information (LSTM, 

3D-CNN, and ConvLSTM) outperformed traditional CNN models in prediction accuracy, especially 3D-CNN 

and ConvLSTM, performed well in short-term prediction skill indicators. Zhang et al. [12] also evaluated three 

deep learning models: MLP, CNN, and LSTM, for photovoltaic nowcasting using sky images, finding that the 

LSTM-based model significantly outperformed others, achieving a 21% improvement in RMSE skill score over 

the persistence baseline in predicting one-minute-ahead solar power output. 
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 In this section, three main approaches to daylight forecasting are presented: traditional methods, machine 

learning methods, and deep learning methods. Among the deep learning methods, this section describes the 

application of CNNs and attention mechanisms, which have shown great potential to improve the accuracy and 

efficiency of daylight forecasting in particular. 

2.1. Traditional Method of Solar Radiation Prediction 

 Traditional solar radiation prediction methods mainly rely on empirical models, statistical methods, and 

physical simulations, and since the 80s of the 20th centuries, time series methods have become the early focus of 

PV forecasting research, with countries such as Europe, the United States, and Japan leading the development of 

PV technology. Sidrach-de-Cardona and Lopez [13] of the University of Malaga, Spain, were among the first 

scholars to apply multiple linear regression models to predict the energy output of independent photovoltaic 

systems. Chowdhury and Salfur [14] used autoregressive moving averages (ARMA) and autoregressive moving 

averages (ARMA) to predict the energy output of photovoltaic systems. ARMA) and Autoregressive Integral 

Moving Average (ARIMA) models to study the energy output of photovoltaic systems, further developing this 

field. Subsequently, Hassanzadeh et al. [15] proposed an ARMA model for hourly PV generation forecasting in 

collaboration with NV Energy. Besides, to address large-scale solar forecasting, Numerical Weather Prediction 

(NWP) systems solve fluid dynamics and radiative transfer equations, though their computational complexity 

limits temporal resolution. Jimenez et al. [16] researched a WRF-Solar model, which is an operational NWP 

model optimized for solar forecasting, integrating aerosol-radiation feedbacks and high-temporal-resolution 

outputs to address industry needs, which is shown in Figure 3.  

 

 

Figure 3. Suncast solar power forecasting system [16]. 
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2.2. Machine Learning Method of Solar Radiation Prediction 

 Machine learning has greatly improved the ability to predict solar radiation, which solves the limitation 

that it is difficult for traditional power systems to accurately predict unconventional power generation [17]. 

Machine learning models enable accurate predictions by using historical solar data to identify and exploit complex 

relationships between inputs and outputs. This process begins with preprocessing of large datasets to ensure that 

the model is trained on relevant, high-quality data. Machine learning models in this field typically employ one of 

three approaches: models based on meteorological and geographic parameters, time-series models using historical 

solar irradiance data, and hybrid models with exogenous variables [18]. Figure 4 illustrates a comprehensive 

framework for forecasting PV generation using machine learning techniques, emphasizing the integration of data 

collection, data preparation, model training, and predictive validation. The most commonly used machine 

algorithms for solar irradiance prediction include K-nearest neighbor (KNN), support vector machine (SVM), 

decision tree (DT), and random forest (RF). However, despite its advantages, machine learning models also have 

their limitations, such as relying on large amounts of high-quality training data, being prone to overfitting, and 

requiring large amounts of computational resources [19]. These challenges need to be further explored, especially 

as the use of photovoltaic power generation systems continues to increase, and the need for advanced data 

preprocessing techniques to manage large and complex data sets increases. 

 

Figure 4.  ML Solar PV Power [17]. 
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2.3. Deep Learning Method of Solar Radiation Prediction 

It has been proven that deep learning methods, especially convolutional neural networks (CNNs), can effectively 

extract spatial features from sky images for solar irradiance prediction.  

2.3.1. CNN Models 

 As shown in Figure 5, a convolutional neural network consists of a convolutional layer, an aggregation 

layer, and a fully connected layer. The convolutional layer uses adaptive filters to extract spatial features, the 

aggregation layer reduces feature sampling to improve efficiency, and the fully connected layer maps features to 

output. During training, the kernel parameters were optimized using backpropagation and gradient descent, which 

allowed the CNN to learn patterns from low-level to high-level structures hierarchically [20]. This adaptability 

makes CNNs very effective for image-based tasks, such as sun prediction by analyzing sky images. 

 Researchers are actively working on neural networks, with a particular focus on CNNs and their hybrid 

models. In integrated systems, these models often improve prediction accuracy, especially in the case of short-

term forecasts [21]. While researchers have made important contributions to the development of solar irradiance 

prediction, CNNs are inherently incapable of processing temporal information. Because of this limitation, further 

research is needed on how to combine CNNs with other models and methods that can process temporal data so 

that forecasts can be based on both temporal variation and spatial analysis. 

2.3.2. Attention Mechanism 

 The integration of attention mechanisms into deep learning models has significantly enhanced the 

accuracy of solar radiation prediction by enabling models to selectively focus on critical input data. Wang and 

Zhang [22] proposed a CNN-Attention model for solar irradiance prediction, which standardizes and normalizes 

input features before processing them through a convolutional layer with ReLU activation and L2 regularization, 

which depicted in the Figure 6. 

 

 

Figure 5. Convolutional Neural Network Overview by Yamashita et al. [20] 
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 The attention mechanism integrates feature maps, ensuring vital features are considered, followed by 

another convolutional layer for enhanced feature extraction. The model outputs solar irradiance predictions via a 

linear activation Conv2D layer, trained on a comprehensive dataset from 48 scenarios for accurate estimation. 

 

 

Figure 6. Architecture of CNN-Attention model by Wang and Zhang. [22] 

 Jonathan et al. [23] introduced an attention-embedded Convolutional Neural Network (ATT_CNN) model 

for solar irradiance forecasting using sky image sequences, achieving superior accuracy. Qu et al. [24] proposed 

integrating attention into CNN-LSTM models to capture both short-term and long-term temporal changes in time 

series data, further improving prediction accuracy. This capability is crucial for optimizing photovoltaic system 

performance by enhancing responsiveness to changing weather conditions. While attention mechanisms improve 

model interpretability and prediction precision, they also introduce complexity and increase computational 

demands. Despite these challenges, their benefits in solar radiation forecasting make them a valuable addition to 

predictive tools for managing and optimizing solar energy resources. Table 1 summarizes the datasets used and 

the results obtained for the different studies: 

 

Table 1. Summary of Related Works. 

Author Datasets Methods & 

Models 

Limitations Results 

Feng and 

Zhang [9] 

SRRL CNN Weather impact and single 

input 

nRMSE: 8.85%    

FSS: 25.14% 

Alani et al. [2] GEP CNN-MLP Limited to single time and 

site 

RMSE:13.05W/m²-

49.16W/m² 

Papatheofano

us et al. [10] 

CA CNN Need real-time irradiance 

forecasting application 

RMSE: 10.44W/m² 
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Paletta et al. 

[11] 

SIRTA CNN, CNN-

LSTM, 3D-

CNN, 

ConvLSTM 

Limited effectiveness of 

past image sequence 

training 

10-min ahead forecast 

skill: 20.4% 

Zhang et al. 

[12] 

Hemispherical 

HDR sky 

images 

MLP, CNN, 

and LSTM 

Single site, single camera, 

and single photovoltaic 

panel 

RMSE: 21% 

Jonathan et al. 

[23] 

SRRL Attention-

embedded 

CNN 

Rely solely on sky image 

sequences 

RMSE: 62.75W/m²    

MBE: 2.71W/m²       

FSS: 38.81%  

Qu et al. [24] Alice Springs 

photovoltaic 

power system 

Attention-

based CNN-

LSTM 

Long prediction range is 

limited 

nRMSE: 6.34% 

 

3. METHODOLOGY 

 This section introduces the core methods of solar forecasting, including the following key aspects: 

proposed attention-based CNN architecture design, sky image data collection, and data prepossessing steps. The 

approach aims to address the challenges of short-term solar forecasting by establishing a systematic workflow 

from data processing to predictive modeling. 

3.1. Proposed Model Structure 

 This section introduces the proposed deep learning model, which focuses on improving the accuracy of 

solar energy prediction through attention-enhanced feature extraction. The development of the model begins with 

the construction of a basic CNN for sky image processing, and then use separately two attention mechanisms, 

extruded excitation (SE) attention and spatial attention, to improve weather feature learning. Finally, a 

comparative analysis is carried out to optimize the prediction performance and interpretability of the proposed 

model in solar forecasting applications. 

3.1.1. CNN Model 

 The CNNs are the backbone of this study's deep learning architecture. CNNs are highly effective in 

processing grid-structured data like images, thanks to their convolutional layers, which extract spatial features 

through kernel operations. A kernel 𝐾, represented as a small matrix of weights, slides over the input image I to 

compute feature maps 𝐹: 

𝐹(𝑥, 𝑦) = ∑ ∑ 𝐾(𝑖, 𝑦) ∙ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑖)𝑛−1
𝑗=0

𝑚−1
𝑖=0                (1) 

Here, m and n represent the kernel dimensions, and (x,y) denote the spatial coordinates of the output feature map. 

CNNs are particularly adept at capturing local patterns such as edges, textures, and shapes, making them ideal for 

extracting cloud and radiation-related features from sky images. 
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3.1.2. Attention CNN Model 

 Attention mechanisms are incorporated into the CNN framework to enhance its ability to focus on the 

most critical regions of the input. This research employs Squeeze-and-Excitation (SE) Attention; nevertheless, 

for a better justification why we have focused on SE-Attention, the research did an ablation study on the other 

type of attention mechanism called spatial attention. 

Spatial Attention focuses on "where" the model should look in the image by emphasizing spatially important 

regions. The attention map is computed as: 

𝐴8 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣2𝐷([𝐹𝑎𝑣𝑔, 𝐹𝑚𝑎𝑥]))                 (2) 

Where and represent the average-pooling and max-pooling operations applied along the channel dimension of 

feature maps 𝐹. Although this mechanism is effective in identifying important spatial regions, it is still insufficient 

for solar forecasting. For example, it treats all channels in the same way, ignoring their unique spectral signatures 

that are essential to distinguish between cloud types and solar features. In addition, the clustering operations it 

performs magnify local artifacts, causing larger weather patterns that span multiple regions to be ignored. These 

limitations prompted this study to focus more on SE-Attention mechanism in order to better capture the channel 

relationships that are critical for accurate solar forecasting. 

With the limitation of spatial attention mechanism, this research has focus on squeeze and excitation (SE) 

attention. SE Attention focuses on "what" features to emphasize by adaptively recalibrating channel-wise feature 

responses. This involves a two-step process: 

- Squeeze: Global average pooling reduces each feature map to a single value. 

- Excitation: Fully connected layers apply non-linear transformations to model inter-dependencies between 

channels: 

𝑠 = 𝜎(𝑊2 ∙ 𝑅𝑒𝐿𝑈(𝑊1 ∙ 𝑧))                    (3) 

Here, is the squeezed vector, and are trainable weights, and σ denotes the sigmoid activation. 
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Figure 7.  Proposed model architecture. 

 The architecture of the proposed model, illustrated in Figure 7, combines CNN with attention mechanisms 

to predict solar energy potential from radiance sky images. The input is a 64×64×3 image representing the 

radiance distribution of the sky. The model consists of two convolutional blocks, each comprising a convolutional 

layer, batch normalization, an attention module, and max pooling. These blocks progressively extract and refine 

spatial features, focusing on the most relevant regions through attention mechanisms. The extracted features are 

flattened and passed through two fully connected layers, each with 1024 neurons and dropout regularization. The 

final output layer predicts the solar energy potential as a single numerical value, making this model suitable for 

regression tasks. The model is trained with the Mean Squared Error (MSE) loss function and the Adam optimizer, 

with a learning rate of 3 × 10−6 , to ensure efficient parameter updating and stable convergence. To avoid 

overfitting, a dropout rate of 0.4 was used in the fully connected layers, while batch normalization stabilized the 

learning of the convolutional layer. In addition, the experiment used 10-fold cross-validation to verify 

performance to create a robust evaluation framework that improves the generalization ability of the model.  
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3.2. Dataset Collection 

 The first dataset, called Sky Images and Photovoltatic Power Generation Dataset (SKIPPD), was 

developed by Stanford University's Environment Assessment and Optimization (EAO) Group. The SKIPPD 

dataset includes sky imagery and photovoltaic data, making it suitable for short-term solar forecasting. The sky 

image was recorded by a 6 MP 360-degree fisheye camera at video resolution at 2048x2048 pixels, running at 20 

frames per second. The recorded video then generates an image in JPG format at a 1-minute sample rate. Figure 

8 shows examples of sky images in different weather conditions. In addition, raw photovoltaic (PV) data was 

recorded for a photovoltaic installation located approximately 125 meters away from the camera. These PV data 

are also recorded at one-minute intervals, which coincides with the frequency at which sky images are captured, 

allowing for accurate correlation between visual data and output power [25]. 

 The second dataset, also collected on the 6Stanford campus, contains 2048 x 2048 pixels ultra-high-

resolution video images of the sky recorded at 20 frames per second and every 60 seconds using photographic 

images and solar measurements of the same resolution. This continuous imaging method preserves complete 

spatial details and records changing cloud covers, allowing for a detailed study of the effects of the atmosphere 

on solar energy production [26]. 

 

 

(a) sunny                                         (b) cloudy   

Figure 8. Sample of the sky images in different weather conditions; (a) is sunny day and (b) is cloudy day. 

 In this study, the benchmark dataset used has undergone necessary image preprocessing steps, which 

include resizing the image frames and filtering out duplicate images caused by sporadic anomalies in the OpenCV 

video capture functionality. Additionally, the sky photos and PV power generation data in the dataset are 

organized into aligned pairs to ensure consistency and alignment of the data. Figure 9 illustrates the distribution 

of photovoltaic power generation in both the development and test sets, and a detailed profile of PV power 

generation over 20 specific days in the test set. 
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Figure 9. The PV power generation data distribution: A is the development set data distribution, B is the test set 

data distribution, C is PV profile for each test day [25] 

 

3.3. Data Preprocessing 

 The data preprocessing phase establishes a robust foundation for model training by systematically 

transforming raw sky images into standardized inputs while ensuring representative data partitioning. This stage 

addresses two critical requirements for solar forecasting models: consistent input dimensions and temporally 

coherent evaluation splits that reflect real-world operational conditions. 

3.3.1. Data Resizing 

 Sky images undergo spatial and numerical standardization to meet model input specifications. Original 

images are rescaled to a uniform resolution of 64×64 pixels through aspect ratio-preserving transformations, 

followed by pixel value normalization to the [0,1] range using linear scaling. This standardized processing offers 

two advantages: the ability to batch image data in different weather conditions and the ability to reduce brightness 

differences due to changes in solar altitude and weather fluctuations. During the pre-processing process, we paid 

special attention to maintaining the color fidelity of the RGB three-channel, which is essential for the subsequent 

attention mechanism to effectively identify the texture features of the clouds. 
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3.3.2. Data Partitioning 

 In the data partitioning section, the observations are clustered into daily chunks of the full solar cycle, 

which are randomly shuffled while preserving the intra-day chronological order. The hierarchical k-fold cross-

validation scheme allocates the entire day block into different folds, ensuring that each validation set contains 

unique weather states that are proportional to the weather conditions that occur in the entire dataset. The above 

steps can be used to maintain time consistency during the performance evaluation process so that the model can 

be exposed to different cloud mobility scenarios during the training iteration process. The partitioning logic used 

in the study, combined with index remapping capabilities, allows for both full-resolution datasets and 

computationally optimized subsets without compromising the consistency of the evaluation. 

3.3.3. Evaluation Metrics 

 The evaluation metrics of the proposed model are designed to rigorously assess its performance in 

predicting solar energy potential from radiance sky images. The evaluation process involves the use of a separate 

test dataset, appropriate preprocessing, performance metrics, and visual analysis to validate the model's 

effectiveness and generalizability. The test dataset consists of 14,003 samples, including images and 

corresponding PV output values. These samples are preprocessed by normalizing image data to the range [0, 1] 

and ensuring consistency in data types. To analyze the model's performance under varying weather conditions, 

the test data is categorized into sunny and cloudy days based on known dates. This allows for a more granular 

evaluation of the model's behavior in different scenarios. 

 The testing process begins by evaluating the performance of each of the 10 models trained during cross-

validation on the test dataset. For each model, predictions are generated and compared against the ground truth 

PV outputs to calculate key evaluation metrics. The ensemble approach is applied by averaging the predictions 

of all models, resulting in a final prediction that leverages the strengths of multiple models to enhance robustness. 

To quantify the model's performance, several metrics are employed, including Root RMSE, MAE, 𝑅2, and EVS. 

RMSE measures the average magnitude of the prediction error and is computed as follows, where n is the number 

of data, is the predicted value, and is the measured value:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2
𝑛
𝑖=1                            (4) 

MAE calculates the average absolute error between predictions and ground truth values, expressed as: 

MAE =
1

𝑛
∑ |𝑦̂𝑖 − 𝑦𝑖|
𝑛
𝑖=1                                  (5) 

The coefficient of determination (𝑅2) evaluates how well the predictions explain the variance in the ground truth 

data: 

𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑦̂𝑖−𝑦̅)
2𝑛

𝑖=1

                                (6) 
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Finally, the Explained Variance Score (EVS) measures the proportion of variance captured by the model: 

𝐸𝑉𝑆 = 1 −
𝑉𝑎𝑟(𝑦̂−𝑦)

𝑉𝑎𝑟(𝑦)
                                (7) 

 

3.4. Experimental Setup and Technology 

 To ensure the effective development and evaluation of our deep learning models for solar energy 

prediction, the research has carefully selected a robust technology stack that balances computational efficiency, 

development flexibility, and reproducibility. The chosen tools and hardware components are specifically 

optimized for handling image-based deep learning tasks, particularly the processing of high-resolution sky images 

and the implementation of attention mechanisms. Table 2 below outlines the complete technology stack that will 

be utilized in this research, including both software frameworks and hardware specifications. 

Table 2. Summary of Technology for the Research. 

Software Framework TensorFlow 

Language Python 

Libraries NumPy, Keras, Matplolib, itertools, 

h5py 

Hardware Central Processing Unit (CPU) Gen Intel(R) Core(TM) i7-11800H @ 

2.30GHz 2.30 GHz 

Graphic Processing Unit (GPU) NVIDIA GeForce RTX 3050 

 

4. EXPERIMENTAL RESULT AND ANALYSIS 

 This section presents the practical development and outcomes of the solar energy prediction system. It 

covers three main aspects: the design and implementation of the deep learning models, the explainability analysis 

of model decisions, and the deployment of an interactive Graphical User Interface (GUI) for real-world 

application. Together, these components demonstrate the research's technical execution, interpretability, and 

practical usability. 

4.1. Design and Implementation 

 This section details the design, development, and implementation of a solar potential prediction model. 

Three model variants, benchmark CNN, CNN with spatial attention, and CNN with SE attention, were evaluated 

to find the best performing model. In addition, we also visually analyzed the prediction results of the best model 

to verify its practical application value. 
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 To ensure fair comparison, all models were trained and evaluated under the same experimental conditions. 

Each architecture uses 10-fold cross-validation, combined with the division of time-series block data, which not 

only retains the time dependence but also ensures the balanced distribution of the data at each fold. The parameters 

were reinitialized at the start of training, using the Adam optimizer, with the mean square error (MSE) as the 

optimization target. To prevent overfitting, we employ an early stop mechanism with a 5-epoch patience window 

and automatically save the optimal model weights based on validation losses. During training, training and 

validation losses for each iteration are recorded for detailed convergence analysis. 

 The architectural differences between the three models are mainly in the attention mechanism while 

maintaining the same underlying convolutional layer. The baseline CNN is used as a reference model without any 

attention module, while the spatial attention variant dynamically weights the characteristics of a specific region 

through the spatial importance map of learning. In contrast, the SE attention model uses channel-level feature 

recalibration to enhance discriminative feature learning by squeezing and excitation. 

 Performance evaluation was conducted through a multi-dimensional assessment framework, including 

convergence behavior analysis via training/validation loss, optimal model selection per fold based on validation 

performance, with comprehensive results across both training and test sets presented in Table 4. 

 

Table 4. The overall results. 

  
Train 

loss 

validati

on loss 
RMSE MAE R² EVS 

Dataset 1 

CNN 2.20 2.00 2.482 1.524 0.895 0.902 

CNN+Spatial-

Attention 
1.46 1.50 2.347 1.390 0.906 0.912 

CNN+SE-Attention 1.70 1.72 2.231 1.311 0.908 0.912 

Dataset 2 CNN+SE-Attention 4.05 4.01 3.927 2.792 0.655 0.655 

 

 As shown in Table 4, the baseline CNN shows higher training loss than validation loss, suggesting mild 

underfitting. In contrast, attention models demonstrate closely matched losses, with SE at 1.70 versus 1.72 and 

Spatial at 1.46 versus 1.50, indicating strong generalization. The SE-Attention’s smaller gap highlights its stability, 

likely due to effective channel-wise feature weighting. Moreover, the CNN + SE-Attention model outperforms 

both the baseline CNN and the CNN + Spatial Attention variants across all metrics, including RMSE, MAE, 𝑅². 

The improvement in RMSE and MAE highlights the effectiveness of SE-Attention in enhancing prediction 

accuracy, particularly under dynamic weather conditions. Furthermore, the EVS metrics demonstrate the SE-

Attention model's superior ability to explain and capture variance in the data.  
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 While SE-Attention achieved the best results on Dataset 1, RMSE 2.231 and MAE 1.311, its performance 

degraded significantly when applied to Dataset 2, RMSE 3.029 and MAE 1.709, despite maintaining similar R² 

and EVS scores. This suggests that while SE-Attention generalizes well within Dataset 1's distribution, it struggles 

with Dataset 2's characteristics, likely due to domain differences in the video-extracted images. The performance 

metrics of first dataset, including sunny and cloudy conditions, are summarized in Table 5. 

 

Table 5. Dataset 1 results including sunny and cloudy days. 

 

 

 RMSE MAE R² EVS 

Sunny 

CNN 0.751 0.61 0.999 0.993 

CNN +spatial-Attention 0.675 0.547 0.992 0.996 

CNN+SE-Attention 0.511 0.414 0.995 0.997 

Cloudy 

CNN 3.425 2.434 0.793 0.805 

CNN+spatial-Attention 3.246 2.229 0.814 0.823 

CNN+SE-Attention 3.238 2.204 0.815 0.822 

 

 To further validate the best performance CNN + SE-Attention model in the first dataset, its predictions 

were visualized for representative sunny and cloudy days. Figure 10 illustrates the predicted versus actual PV 

outputs under these two distinct weather conditions. In sunny scenarios, the model consistently achieves high 

accuracy in sunny conditions. Across all ten repetitions, the RMSE values for sunny days range from 0.23 in 

Sunny_5 to 0.76 in Sunny_3, with a mean of 0.49 and standard deviation of 0.19. Similarly, MAE spans from 

0.17 in Sunny_5 to 0.71 in Sunny_3, averaging 0.43 with a standard deviation of 0.19. Notably, Sunny_5 yields 

the lowest errors, RMSE 0.23 and MAE 0.17, whereas Sunny_3 in Repetition 3 shows slightly elevated values, 

RMSE 0.76 and MAE 0.71. Despite minor fluctuations, all repetitions maintain RMSE below 0.76 and MAE 

below 0.71, demonstrating robust performance under stable atmospheric conditions. 

 In contrast, for cloudy scenarios, the model reveals higher variability, reflecting the complexity of 

dynamic cloud cover. RMSE spans from 1.44 in Cloudy_8 to 4.70 in Cloudy_4, with a mean of 3.15 and standard 

deviation of 1.18. MAE ranges from 1.17 in Cloudy_8 to 3.31 in Cloudy_4, averaging 2.26 with a standard 

deviation of 0.85. Early repetitions, like Cloudy_2 with RMSE 4.64 and MAE 3.10, exhibit significant errors, but 

later iterations show progressive stabilization. For instance, Cloudy_8 achieves the lowest errors, RMSE 1.44 and 

MAE 1.17, and Cloudy_10 maintains RMSE 2.23 and MAE 1.50. 

 The dual visualization in Figures 10 shows that sunny predictions remain stable with minimal variability, 

confirming the model’s reliability in ideal conditions. Besides, cloudy predictions initially fluctuate but gradually 

stabilize, with RMSE decreasing by 52% from Repetition 4 to Repetition 10 and MAE improving by 55%. While 

short-term variability exists in challenging conditions, aggregated performance across repetitions ensures reliable 

generalization for real-world applications. 
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(a) Repetition 1 model 

 

(b) Repetition 2 model 

 

(c) Repetition 3 model 

 

(d) Repetition 4 model 
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(e) Repetition 5 model 

 

(f) Repetition 6 model 

 

(g) Repetition 7 model 

 

(h) Repetition 8 model 
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(i) Repetition 9 model 

 

(j) Repetition 10 model 

Figure 10. Visualization of nowcast predictions of CNN+SE-Attention model, (a) - (j) shows 10 repetitions. 

  

 This study quantifies the uncertainty during the training process and verifies the reliability of the practical 

application of the model in Figure 11. The left figure reveals the sensitivity of model training to data division 

through the RMSE distribution of each fold in ten cross-validations, while the right figure proves the stability of 

model performance through the mean distribution of ten full cross-validations. Random fluctuations in a single 

training are quantified through dual visual design and provide a key basis for evaluating the robustness of the 

model to cope with changes in data distribution in real scenarios. 

4.2. Model Explainability 

 To interpret the decision-making process of the best performance CNN+SE-Attention model in the first 

dataset, the research employs Gradient-weighted Class Activation Mapping (Grad-CAM), a visualization 

technique that highlights the regions of input images most influential for the model's predictions. To improve the 

efficiency of model interpretability analysis, the research strategically reduced the size of the first dataset to 20% 

of its original capacity. The implementation incorporates robust error handling to ensure reliable heatmap 

generation even when gradient vanishing issues occur, while introducing elliptical sky masking to better align 

with the physical imaging characteristics. Moreover, the analysis compares model attention patterns, including 

sunny and cloudy conditions, by examining four representative sample categories: best-performing cases, median-

error cases, worst-performing cases, and randomly selected samples. 
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Figure 11. Model performance evaluation: Left panel shows the RMSE distribution across all 10 fold cross 

validation runs, demonstrating the variability in individual fold performance; the right panel 

displays the distribution of mean RMSE values for each complete 10 fold CV repetition. 

 

 The visualization results, as shown in Figure 12, reveal a strong correlation between prediction accuracy 

and attention localization precision. For both sunny and cloudy conditions, the best-performing samples, error 

=0.00, demonstrate optimal attention focusing within the elliptical sky region. For median-error samples, the 

sunny sample, error =0.62, maintains relatively concentrated attention in the central sky area, though with slight 

radial dispersion, while the cloudy sample, error =1.72, shows spiral-shaped attention distribution that extends 

beyond key meteorological features. This structural difference in attention patterns corresponds to the nearly 

threefold increase in prediction error for cloudy conditions. However, the worst-performing samples reveal 

catastrophic attention misalignment. The sunny case with error =3.15 displays fragmented attention clusters in 

non-sky regions, while the cloudy sample with error =22.12 exhibits completely scattered activation patterns with 

no discernible focus on cloud structures. The magnitude of error escalation suggests an abrupt breakdown in 

feature extraction rather than gradual performance decay. Random samples demonstrate intermediate 

characteristics, with attention maps showing partial sky-region coverage combined with erratic activation.  

 These observations collectively indicate that prediction accuracy is highly sensitive to the geometric 

organization of attention. Optimal performance requires tight spatial clustering of attention within physically 

relevant regions, while even minor dispersion correlates with measurable error increases. The most severe errors 

occur when attention loses its spatial coherence entirely, suggesting the model's decision-making process depends 

fundamentally on maintaining proper attention localization. 
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(a)Best sunny and best cloudy samples 

 

(b)Median sunny and cloudy samples 

 

(c)Worst sunny and cloudy samples 

 



- 24 - 
 

World Scientific News 212 (2026) 24-31 

 

(d)Random sunny and cloudy samples 

Figure 12. The visualization of four categories samples, (a) - (d) shows best, median, worst, and random 

samples. 

 Building upon Grad-CAM's localized explanations, we systematically analyze attention patterns through 

a multi-stage comparative approach. The analysis includes aggregate heatmaps for sunny and cloudy conditions, 

pixel-wise statistical testing to identify significant differences, and regional comparisons through partitioned 

image analysis, which displayed in Figure 13. 

 The Regional Attention Intensity Comparison reveals three key findings. First, all five regions 

demonstrate extreme statistical significance of p<0.001, confirming fundamental differences in how the model 

processes sunny versus cloudy conditions. Second, sunny conditions consistently show near-zero attention in 

peripheral regions from Top-Left or Top-Right ≈ 0.0, while maintaining moderate focus on central areas. In 

contrast, cloudy conditions exhibit substantially heightened attention across all regions, particularly in the 

Bottom-Right quadrant where scattering effects are most pronounced. 

 Most notably, the Center region maintains stable attention levels regardless of weather conditions, serving 

as an invariant reference point for the model's decision-making. This spatial pattern reflects meteorologically 

sound reasoning, which suppress noise in clear skies while actively monitoring cloud formations during overcast 

conditions. The Bottom-Right quadrant's particularly strong response to cloudy conditions suggests the model 

has learned to prioritize regions where atmospheric scattering signatures are typically most visible. 
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(a) Sunny mean attention                                 (b) Cloudy mean attention 

 

(c) Attention Difference                                   (d) Significance map 

 

 

 

 

 

 

 



- 26 - 
 

World Scientific News 212 (2026) 26-31 

 

(e)Regional Attention Intensity Comparison. 

Figure 13. The comparison of attention pattern heatmaps, (a) - (e) shows sunny and cloudy days' mean attention 

heatmaps, attention difference (Cloudy - Sunny), significance map, and regional attention intensity comparison. 

 

4.3. Model Visualization – GUI Design 

 The developed web application integrates the trained model through a Flask + TensorFlow backend with 

Bootstrap + jQuery (v1.11.1) frontend, featuring three core functional modules: 

4.3.1. Main Pages 

 To enhance the usability and accessibility of the solar energy prediction system, the research developed 

an interactive web-based GUI that enables real-time forecasting and model explainability. The platform consists 

of three main pages, which shown in Figure 14, 15, 16: Home Page, providing an overview of the research and 

navigation; Dataset Display Page, allowing users to explore the sky image datasets used for training; and Solar 

Prediction Model Page, which offers core functionalities including solar irradiance prediction and model 

explainability visualization using Grad-CAM. This GUI bridges the gap between deep learning research and 

practical solar energy applications, making the CNN + Attention model accessible to both technical and non-

technical users. 

4.3.2. Core functionality test 

 The predictive model was first validated by testing its ability to successfully generate correct evaluation 

metrics (RMSE, MAE, R², EVS) and Grad-CAM explainability visualizations. As demonstrated in Figure 17 and 

18, the system properly processed uploaded test datasets, including times_test.npy time series files, displaying all 

required prediction results and attention heatmaps in the web interface. 
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Figure 14.  Home Page. 

 

 

Figure 15.  Dataset Display Page. 
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Figure 16. Solar Prediction Model Page. 

 

 

Figure 17. Solar Prediction Metrics Result in GUI. 
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Figure 18.  Model Explainability results in GUI. 

 

5. CONCLUSION 

 This paper investigates the prediction of solar energy potential from radiance sky images using deep 

learning, systematically evaluating three convolutional architectures: CNN, CNN+SE-Attention, and CNN + 

Spatial-Attention, on two sky image datasets. Experimental results demonstrated that the CNN+SE-Attention 

model achieved optimal performance, with the performance of first dataset better compared to the second, 

highlighting its suitability for solar irradiance mapping under varying sky conditions. For the best SE-Attention 

model in the first dataset with the best performance, the study further uses Grad-CAM visualization to verify the 

interpretability of the model, revealing different attention patterns in sunny and cloudy scenarios and prioritizing 

key sky regions in the prediction process. By integrating these findings into an interactive GUI, the research 

bridges theoretical advancements in attention mechanisms with practical applications, offering a deployable tool 

for solar energy forecasting. This work establishes a framework for sky image-based renewable energy prediction, 

emphasizing model transparency, meteorological relevance, and user accessibility. 

 However, there are still limitations to the current research. Model performance is still limited by the 

diversity of datasets, especially for rainy weather and rapidly changing cloud cover scenarios. The current training 

data is mainly from a single weather station at a fixed location, lacking a balanced distribution of different seasons 

and weather patterns. In addition, due to the limitation of experimental equipment, the captured sky images have 

low resolution and are greatly affected by lighting conditions, so exposure anomalies are prone to occur during 

sunrise and sunset. The model is slow to respond to sudden weather changes, and there is a delay in prediction 

results. In terms of hardware deployment, the existing model requires GPU support with high computing power, 

which is difficult to directly apply to the embedded monitoring system of solar power plants. 
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 Future research will address these limitations by optimizing data acquisition schemes to obtain more 

comprehensive images of the sky using multi-angle camera arrays. Secondly, a lightweight model based on 

mobile devices is developed, and knowledge distillation and quantization techniques are used to reduce the 

computational requirements. The timeliness of short-term forecasts can also be improved by introducing time 

series analysis methods, and a more reliable correction mechanism can be established by combining historical 

power generation data. In addition, a complete test platform will be built to evaluate the long-term performance 

of the model in the actual solar power plant, and the adaptation of the model to different weather conditions will 

be enhanced through transfer learning technology. These improvements will significantly increase the utility of 

the forecasting system in the field of renewable energy. 
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