
Isolation and Characterization of Bacteria Isolated from Wound Infection

Akubuo C. R^{1*}, Yongabi, K. A¹, Nwofor, C.N¹ and Orioha, N. L¹

Department of Microbiology, Imo State University, Owerri, Imo State, Nigeria

Corresponding author Email: martinakubuo@gmail.com

ABSTRACT

Wound infections continue to pose a major public health challenge in many low- and middle-income countries, where delays in diagnosis and limited laboratory capacity contribute to preventable morbidity. Accurate characterization of the bacterial agents involved is essential for effective management; yet, routine diagnostics in many settings rely solely on phenotypic methods that may overlook emerging or clinically significant species. This study investigated the bacteriological profile of wound infections from a tertiary hospital in Southeastern Nigeria. A total of fifty patients presenting with traumatic (n = 13), surgical (n = 10), burn (n = 10), infected (n = 10), and diabetic foot wounds (n = 7) were recruited, of which 30% were male and 70% were female. The wound samples were analyzed for bacteria isolates using standard microbiological culture methods, biochemical, and PCR techniques for molecular identification. A total of six bacteria isolates were recovered, which includes *Staphylococcus aureus* as the predominant organism (34%), followed by *Klebsiella* spp. (22%), *Enterococcus* spp. (18%), *Escherichia coli* (10%), *Salmonella* spp. (8%), and *Proteus* spp. (4%). Traumatic and infected wounds yielded the highest number of isolates, which includes *Staphylococcus aureus*, *Klebsiella* spp., *Enterococcus* spp., *Escherichia coli*, *Salmonella* spp., and *Proteus* spp., while the least number of isolates were recovered from diabetic foot wounds and includes *Staphylococcus aureus*, *Klebsiella* spp., *Enterococcus* spp., and *Escherichia coli*. This study has highlighted some of the bacterial isolates normally associated with different wound infections, and this will assist in strengthening the epidemiological baseline for future surveillance, infection control planning, and antimicrobial stewardship initiatives.

Keywords: wound infection, identification, characterization, and bacteria

(Received 10 November 2025; Accepted 17 December 2025; Date of Publication 14 January 2026)

1. INTRODUCTION

Wound infections remain a significant clinical and public health concern because once the integrity of the skin is disrupted, microorganisms can infiltrate underlying tissues and initiate complex inflammatory processes. These infections contribute to prolonged hospital admission, increased healthcare expenditure, delayed wound healing, heightened morbidity and mortality. Both chronic and acute wounds, including surgical site infections (SSIs), traumatic injuries, burns, and pressure ulcers, are increasingly recognized as part of a growing global burden. Recent estimates place the pooled global incidence of SSIs at approximately 2.5% (95% CI: 1.6–3.7%), with substantially higher rates, reaching up to 7.2%, reported in parts of Africa (Mengistu *et al.*, 2023; Zuniga *et al.*, 2025). Even in high-income countries, an estimated 2% of the population may be affected by chronic non-healing wounds at any given time (Sen, 2021). The burden is more pronounced in low- and middle-income countries, where overcrowded facilities, inadequate infection control measures, and limited diagnostic capacity contribute to the persistence and spread of wound-associated microorganisms (WHO, 2023; Rezaei *et al.*, 2025). Fundamentally, wound infections arise when pathogenic microbes penetrate the protective skin barrier and proliferate within compromised tissues, triggering localized or systemic inflammatory responses (Agyapong *et al.*, 2023).

The microbial landscape of wound infections is diverse, dynamic, and often polymicrobial. Commonly implicated organisms include *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Escherichia coli*, *Proteus* spp., and various *Streptococcus* species (Bessa *et al.*, 2022; Puca *et al.*, 2021; Ibraheem *et al.*, 2025). These bacteria possess virulence traits that enhance their ability to persist within the wound environment, such as the production of enzymes, toxins, and adhesins that facilitate tissue invasion and survival. A particularly important feature of many wound pathogens is their capacity to form biofilms structured microbial communities encased in extracellular polymeric substances. Biofilms protect bacteria from environmental stressors, host immune responses, and physical clearance mechanisms, enabling them to establish long-lasting infections and significantly delay wound healing (Siddiqui and Bernstein, 2010; Guerra *et al.*, 2022).

The microbial composition of wounds varies according to several factors, including the type and depth of the wound, the duration before presentation, underlying host conditions such as diabetes and vascular insufficiency, and environmental exposure within healthcare settings (Yao *et al.*, 2020; Iyun *et al.*, 2024). These variations emphasize the need for precise bacteriological investigation, as the organisms present and their interactions with one another—directly influence the clinical course of the infection.

Given this complexity, the accurate isolation and characterization of bacteria from wound infections is essential for understanding the microbial ecology of wounds and supporting effective clinical management. Traditional bacteriological techniques, including microscopy, culture, and biochemical testing, remain fundamental for identifying pathogenic species. However, phenotypic similarities between closely related organisms, particularly within groups such as the *Klebsiella pneumoniae* species complex, can sometimes lead to diagnostic uncertainty. To address these limitations, recent studies recommend integrating phenotypic approaches with molecular tools, such as 16S rRNA sequencing, to achieve precise species-level identification, improve surveillance, and support clearer epidemiological mapping of wound pathogens (Reddy *et al.*, 2024; Guerra *et al.*, 2022).

Accurate knowledge of the local bacterial profile of wound infections is essential for diagnosis, wound-care planning, and the development of evidence-based infection-control measures. This study, therefore, focuses on isolating and characterizing bacteria associated with wound infections in a tertiary healthcare setting.

2. MATERIALS AND METHODS

Study Design and Setting

This study employed a cross-sectional, laboratory-based design and was conducted at the Federal Medical Centre (FMC), Owerri, Imo State, Nigeria. FMC is a major tertiary referral hospital serving both urban and peri-urban communities across southeastern Nigeria. All microbiological procedures were carried out in the Department of Microbiology laboratory under standard quality-control and biosafety conditions.

Sample Population and Eligibility Criteria

The study population consist of patients presenting with clinically diagnosed wound infections, including traumatic wounds, diabetic ulcers, burns, pressure sores, and post-surgical wounds. Only patients who had not received systemic antimicrobial therapy within the previous 72 hours were eligible. Individuals on active antimicrobial treatment or those who declined consent were excluded from the study.

Sample Size and Sampling Technique

A total of 50 wound swab samples were collected. A consecutive sampling strategy was adopted, ensuring that all eligible and consenting patients who presented within the study period were included.

Sample Collection and Transport

Wound exudates were collected aseptically using sterile cotton swabs. Before sampling, superficial contaminants were gently removed by cleansing the wound surface with sterile normal saline. Each swab was immediately placed into Amies transport medium and transported to the laboratory within 30 minutes for prompt microbiological processing.

Culture and Isolation of Bacteria

Each specimen was inoculated onto blood agar, MacConkey agar, Mannitol Salt Agar (MSA), chocolate agar, *Salmonella*–*Shigella* (SS) agar, and nutrient agar. All culture media (Oxoid, UK) were prepared and quality-checked according to manufacturer instructions. Plates were incubated aerobically at 37°C for 18–24 hours. Chocolate agar plates were incubated in a CO₂-enriched atmosphere (5–10%). Distinct colonies were purified by sub-culturing to obtain discrete isolates for characterization.

Phenotypic Identification of Isolates

Bacterial identification was performed based on colony morphology, Gram staining, and conventional biochemical tests following CLSI M35-A2 (2024) and standard diagnostic procedures: catalase, coagulase, citrate utilization, indole production, oxidase, Triple Sugar Iron (TSI), motility, and MR–VP tests. Interpretation of results was based on established biochemical profiles for clinically relevant bacteria. The most prevalent organisms were selected for molecular characterization.

Molecular Identification of Bacterial Isolates

Genomic DNA Extraction

Genomic DNA was extracted from pure cultures using the Zymo Research Fungal/Bacterial DNA MiniPrep Kit (Inqaba Biotech, South Africa) following the manufacturer's protocol. DNA was eluted in 100 μ L and stored at -20°C .

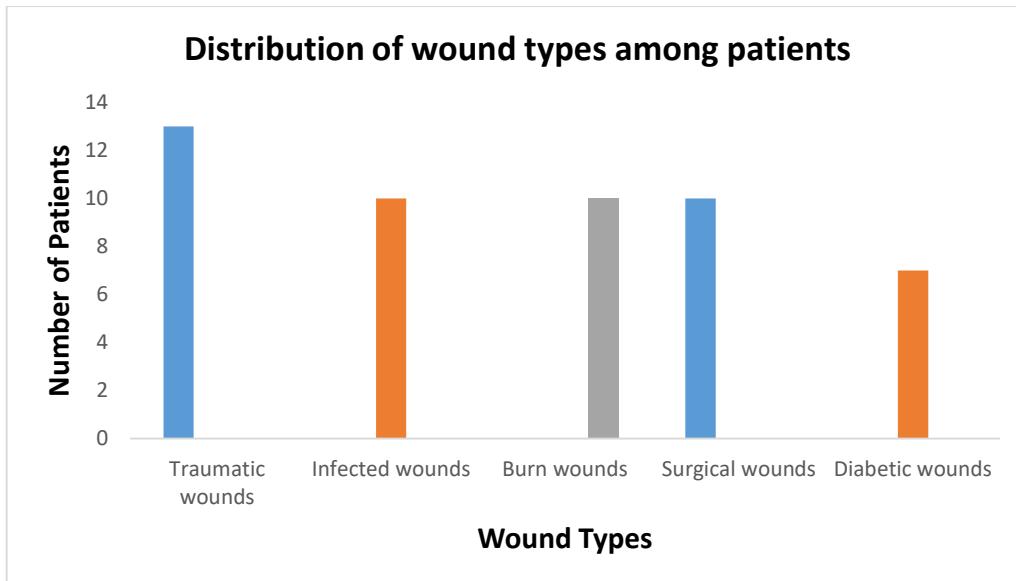
DNA Quality and Quantification

DNA purity and concentration were assessed using a NanoDrop 1000 spectrophotometer (Thermo Scientific, USA). Samples with A260/280 ratios of 1.7–2.0 were accepted for downstream analysis.

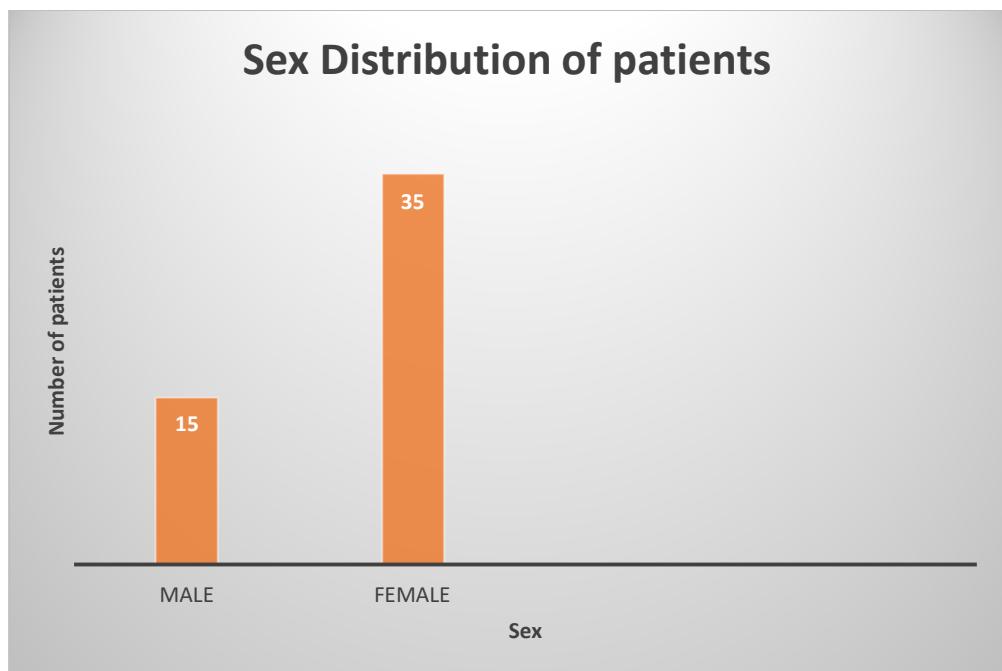
PCR Amplification of 16S rRNA Gene

Partial 16S rRNA gene amplification was carried out to confirm bacterial identity. Universal primers used were: **27F**: 5'-AGAGTTGATCMTGGCTCAG-3' and **1492R**: 5'-TACGGYTACCTTGTACGACTT-3'. PCR reactions (25 μ L) contained 12.5 μ L of 2 \times Master Mix, 0.5 μ M of each primer, and 5 μ L of DNA template.

Thermal cycling conditions:


Initial denaturation: 95 $^{\circ}\text{C}$ for 5 min; cycles of: 95 $^{\circ}\text{C}$ for 30 s, 55 $^{\circ}\text{C}$ for 30 s and 72 $^{\circ}\text{C}$ for 1 min.

Final extension: 72 $^{\circ}\text{C}$ for 7 min. PCR products were visualized on 1.5% agarose gel stained with ethidium bromide.


Sequencing and Bioinformatics Analysis

Amplicons were purified and sequenced bidirectionally. Resulting sequences were edited using BioEdit v7.2 and compared with NCBI GenBank entries using BLASTn. Species identity was assigned based on $\geq 98.5\%$ sequence similarity. Sequences were deposited in GenBank and assigned accession numbers.

3. RESULTS

Figure 1. Distribution of Wound Types Among Patients.

Figure 2. Sex Distribution of Patients.

Table 1. Colonial and Morphological Characteristics of Bacterial Isolates.

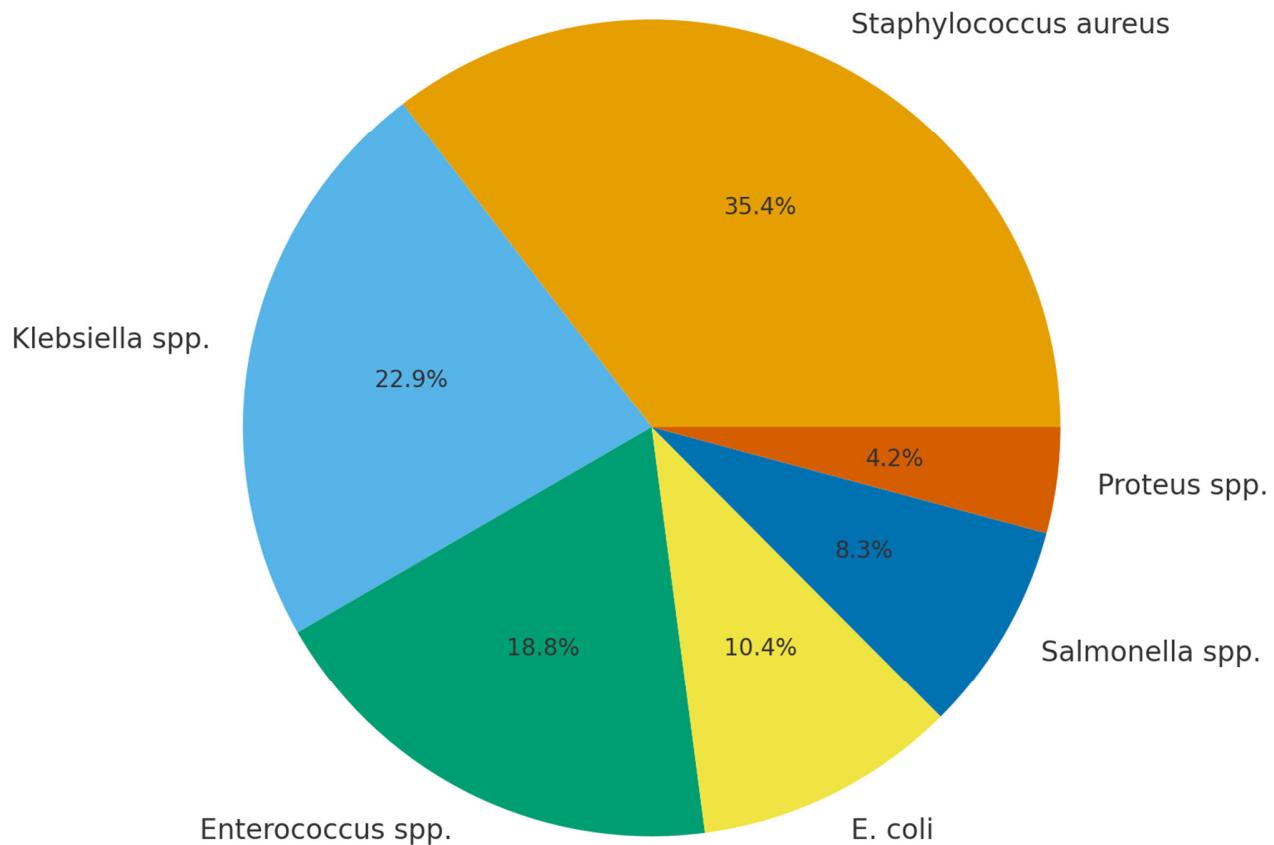
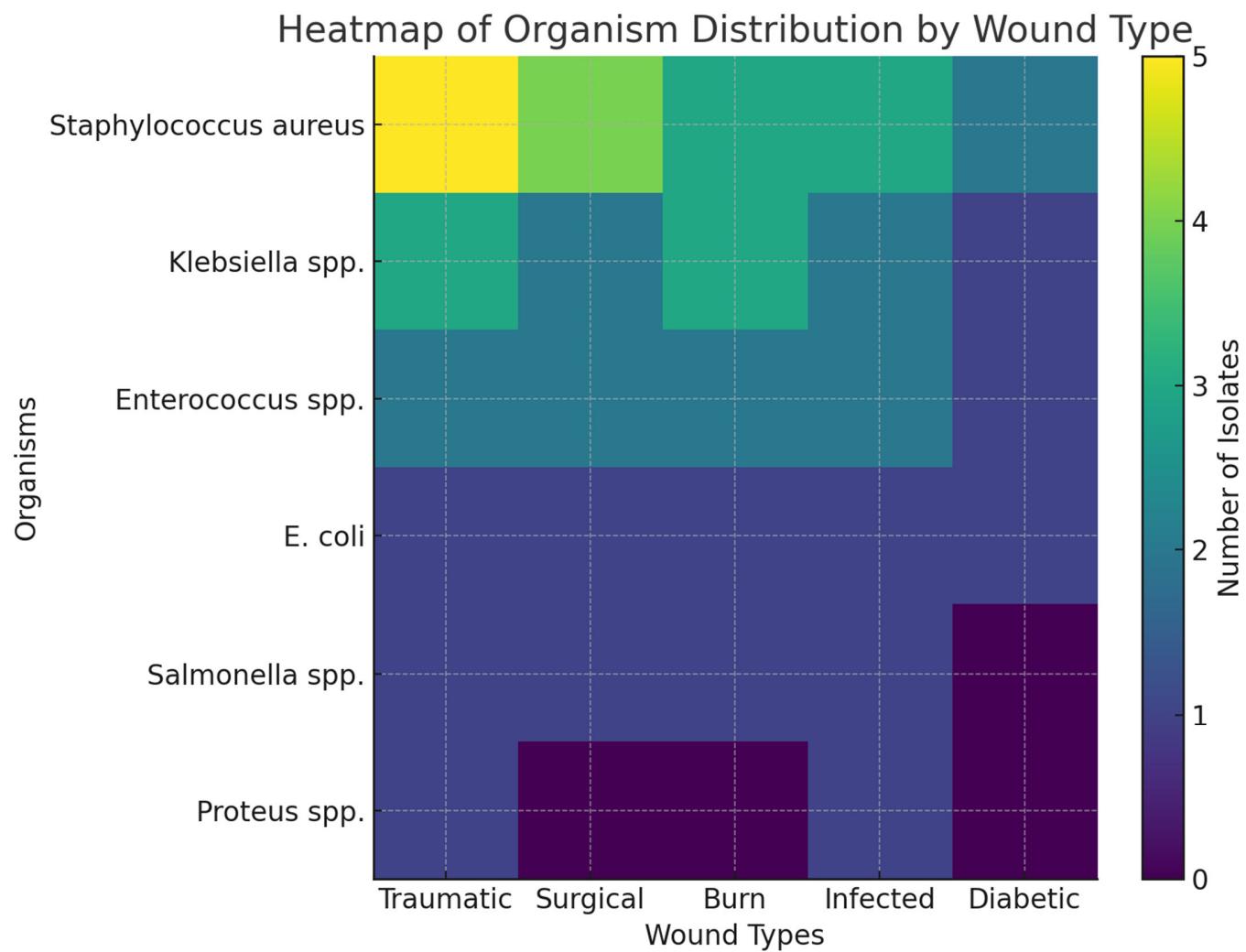

Isolate	Colonial, Morphological Characteristics
1	Pink, Raised growth, Smooth and dry
2	Black, Raised growth and Smooth,
3	Pink, Raised growth and Slimy
4	Pink, Irregular and Smooth
5	Golden, Circular and Smooth
6	Creamy white, Circular and Smooth

Table 2. Morphological and Biochemical Characteristics of Isolated Bacteria.

Isolate	Gram	Arrangement	Motility	Cat	Cit	Ind	Oxi	Coag	VP	MR	Glu	Lac	Suc	Probable Organism
1	-	Rod	+	+	-	+	-	-	-	+	+	+	+	<i>Escherichia coli</i>
2	-	Rod	+	+	+	+	-	-	-	+	-	-	-	<i>Salmonella</i> spp.
3	-	Rod	+	+	+	-	-	-	+	-	+	+	+	<i>Klebsiella</i> spp.
4	-	Rod	+	+	+	-	-	-	+	-	-	-	-	<i>Proteus</i> spp.
5	+	Cocci	-	+	-	-	-	+	+	-	+	+	+	<i>Staphylococcus aureus</i>
6	+	Pairs	-	-	-	-	-	-	+	-	+	+	+	<i>Enterococcus</i> spp.

Key Cat- Catalase, Cit- Citrate, Ind- Indole, Oxi- Oxidase, Coag- Coagulase, VP- Voges Proskauer, MR- Methyl Red, Glu- Glucose, Lac- Lactose, Suc- Sucrose


Percentage Distribution of Bacterial Isolates

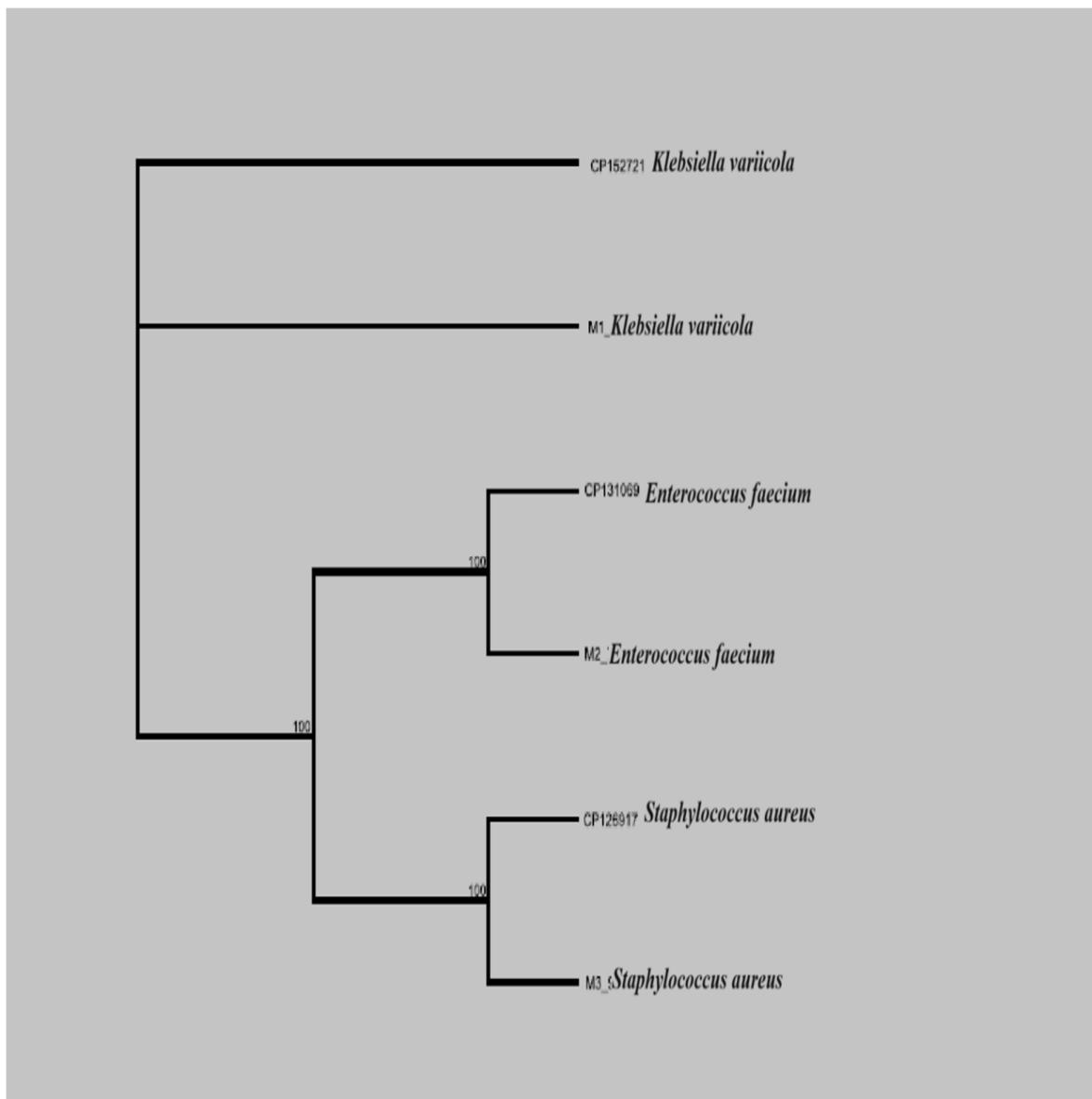

Figure 3. Percentage Distribution of Bacterial Isolates.

Table 3. Prevalence of Bacterial Isolates According to Wound Types.

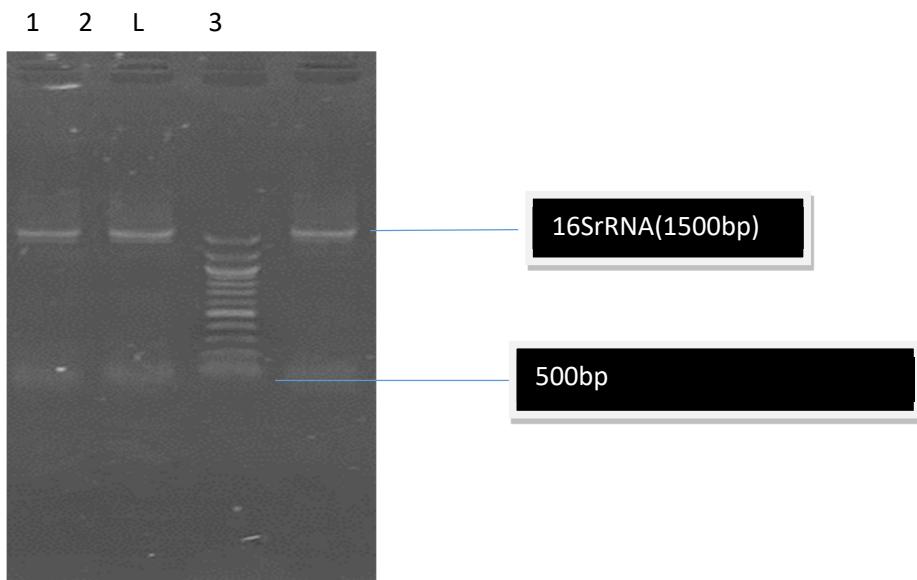

Organisms	Traumatic Wounds (n=13)	Surgical Wounds (n=10)	Burn Wounds (n=10)	Infected Wounds (n=10)	Diabetic Foot Wounds (n=7)	Total (n)	Prevalence (%)
<i>Staphylococcus aureus</i>	5	4	3	3	2	17	34.0%
<i>Klebsiella</i> spp.	3	2	3	2	1	11	22.0%
<i>Enterococcus</i> spp.	2	2	2	2	1	9	18.0%
<i>Escherichia coli</i>	1	1	1	1	1	5	10.0%
<i>Salmonella</i> spp.	1	1	1	1	—	4	8.0%
<i>Proteus</i> spp.	1	—	—	1	—	2	4.0%

Figure 4. Heat map of Organism Distribution by Wound Type.

Figure 6. Molecular characterization of selected isolates.

Figure 7. Agarose gel electrophoresis showing the amplified 16srRNA. Lanes 1-3 represent the amplified 16srRNA at 1500bp while lane L represents the 100bp DNA ladder.

4. DISCUSSION

This study provides an updated picture of the bacteriology of wound infections in a tertiary hospital in Southeastern Nigeria, combining classical culture techniques with molecular identification of key isolates. The organisms recovered *Staphylococcus aureus*, *Klebsiella* spp., *Enterococcus* spp., *Escherichia coli*, *Proteus* spp., and *Salmonella* spp. correspond with pathogens widely implicated in wound, skin, and soft-tissue infections globally, particularly within low- and middle-income countries where such infections contribute substantially to morbidity (Linz *et al.*, 2023; Bandy *et al.*, 2022).

Traumatic wounds constituted the largest proportion of samples, followed by surgical, burn, and clinically infected wounds, whereas diabetic foot wounds accounted for the smallest group. This distribution mirrors patterns observed in African hospitals, where trauma and post-operative wounds dominate clinical presentations due to high rates of road traffic injuries, domestic accidents, and surgical interventions (Oladeinde *et al.*, 2013; Bandy *et al.*, 2022). The lower number of diabetic wounds in the present study likely reflects institutional case mix rather than a genuinely reduced prevalence, as diabetic foot ulcers remain well-documented contributors to chronic wound burden in Nigeria and other African settings (Onwuezobe *et al.*, 2020).

Females accounted for 70% of the study population. Although based on a modest sample size, similar female predominance has been reported in some West African wound studies and may correspond to gender differences in healthcare-seeking behaviour, obstetric and gynecological procedures, domestic burns, and occupational exposure (Iruegbu *et al.*, 2013; Onwuezobe *et al.*, 2020).

The bacteriological findings reveal *Staphylococcus aureus* as the predominant pathogen, responsible for 34% of all isolates. This finding aligns with longstanding evidence identifying *S. aureus* as the major etiological agent of skin and soft-tissue infections across Africa and internationally. Studies from Nigeria, Ghana, and East Africa consistently report *S. aureus* as the leading isolate, especially in traumatic and accidental wounds where disruption of the skin barrier allows rapid invasion by this organism (Oladeinde *et al.*, 2013; Deku *et al.*, 2024; Ahmed *et al.*, 2023; Abdullahi and Lawal, 2024). Its predominance is also consistent with its colonization of the skin and anterior nares, enabling efficient translocation into compromised tissues.

Klebsiella spp. (22%) and *Enterococcus* spp. (18%) were the next most frequent isolates, highlighting the increasing contribution of Enterobacteriales and enterococci to wound and surgical-site infections in low-resource settings. Their prominence in this study aligns with recent multicenter reports from Africa and the Middle East, where *Klebsiella* spp. and *E. coli* have emerged as major Gram-negative contributors to wound infections, often linked to antimicrobial pressure, environmental persistence, and hospital transmission (Monk *et al.*, 2024; Mansoor *et al.*, 2024; Bandy *et al.*, 2022). The recovery of *Enterococcus* spp., particularly *E. Faecium* reflects global trends indicating their transition from relatively benign commensals to significant hospital-associated pathogens capable of surviving harsh environments, contaminating surfaces, and spreading via healthcare contact (Zhou *et al.*, 2020; Wei *et al.*, 2024; Farsi *et al.*, 2023).

Escherichia coli accounted for 10% of isolates, consistent with its role as an occasional opportunistic invader in wound infections rather than a dominant pathogen. Similarly, *Salmonella* spp. (8%) and *Proteus* spp. (4%) occurred at lower frequencies. These proportions correspond with other African studies, where both organisms appear primarily in mixed or polymicrobial infections rather than as principal wound pathogens (Pandukur *et al.*, 2020; Ahmed *et al.*, 2023).

Overall, the pattern observed here, dominated by *S. aureus*, followed by *Klebsiella* spp. and *Enterococcus* spp., fits within the broader regional and global epidemiological profile of wound infections. Variations in relative proportions across different studies are commonly attributed to local hospital flora, patient demographics, antimicrobial usage patterns, and infection-control practices (Bandy *et al.*, 2022; Yucens *et al.*, 2025).

The inclusion of molecular characterization adds important depth to these findings. The confirmation of *Klebsiella variicola* among the predominant isolates is particularly significant. Members of the *K. pneumoniae* complex *K. variicola*, *K. quasipneumoniae*, and *K. pneumonia* are often indistinguishable using routine biochemical methods, resulting in frequent misclassification (Rodríguez-Medina *et al.*, 2019; Fonseca *et al.*, 2017). Earlier studies estimate that 2.5–10% of isolates reported as *K. pneumoniae* are actually *K. variicola* (Fontana *et al.*, 2019). Increasing evidence shows that *K. Variicola* can cause invasive infections, including bloodstream, urinary, and soft-tissue infections, and may harbor clinically relevant virulence factors or acquire resistance determinants (Barrios-Camacho *et al.*, 2019; Imai *et al.*, 2019; Campos *et al.*, 2021; Legese *et al.*, 2025). Its detection in wound samples here underscores the need for molecular techniques to improve diagnostic accuracy and refine local epidemiological understanding.

The molecular identification of *Enterococcus faecium* reinforces its shifting role in modern hospital epidemiology. Once regarded as a low-virulence commensal, *E. faecium* has increasingly been implicated in hospital outbreaks, particularly in intensive care and postoperative settings (Dworniczek *et al.*, 2012; Rajkumari *et al.*, 2014; Farsi *et al.*, 2023). Its prominence in this study aligns with reports of its rising clinical relevance across Africa (Olawale *et al.*, 2011).

Furthermore, the partial overlap of organisms observed, particularly among *Staphylococcus Aureus*, *Klebsiella* spp., and *Enterococcus* spp., is compatible with polymicrobial and biofilm-associated models of wound infection described in contemporary literature. Chronic or long-standing wounds, in particular, are known to harbor multispecies communities that contribute to delayed healing and antimicrobial tolerance (Rubio-Canalejas *et al.*, 2022; Ahmed *et al.*, 2023).

Taken together, the findings of this study is consistent with national and international data and demonstrate that the microbiology of wound infections in this setting mirrors the evolving global landscape. The integration of molecular tools in this study enhances the precision of organism identification to specie level, as this will go a long way in strengthening the epidemiological baseline for future surveillance, infection control planning, and antimicrobial stewardship initiatives.

References

- [1] Abdullahi, B., and Lawal, F. B. (2024). Isolation, identification and antibiotic susceptibility patterns of bacteria associated with wound of patients attending Ahmadu Bello University Teaching Hospital, Shika, Zaria-Nigeria. *Science World Journal*, 19(3), 610-616.
- [2] Ahmed, E. F., Rasmi, A. H., Darwish, A. M., and Gad, G. F. M. (2023). Prevalence and resistance profile of bacteria isolated from wound infections among a group of patients in upper Egypt: a descriptive cross-sectional study. *BMC research notes*, 16(1), 106.
- [3] Allegranzi, B., Bischoff, P., De Jonge, S., Kibilay, N. Z., Zayed, B., Gomes, S. M., ... and Solomkin, J. S. (2016). New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. *The Lancet Infectious Diseases*, 16(12), e276-e287.
- [4] Ayodele, M. B. O., Abbey, S. D., Nwokah, E. G., Obunge, O. K., and Omakwele, G. C. S. (2010). Microbial Profile of wound infections in a Nigerian Teaching Hospital. *Sahel Medical Journal*, 13(1), 5-11.
- [5] Bandy, A., Wani, F. A., Mohammed, A. H., Dar, U. F., Dar, M. R., and Tantry, B. A. (2022). Bacteriological profile of wound infections and antimicrobial resistance in selected gram-negative bacteria. *African health sciences*, 22(4), 576-586.
- [6] Barrios-Camacho, H., Aguilar-Vera, A., Beltran-Rojel, M., Aguilar-Vera, E., Duran-Bedolla, J., Rodriguez-Medina, N., ... and Garza-Ramos, U. (2019). Molecular epidemiology of *Klebsiella variicola* obtained from different sources. *Scientific reports*, 9(1), 10610.

- [7] Campos, T. A. D., Almeida, F. M. D., Almeida, A. P. C. D., Nakamura-Silva, R., Oliveira-Silva, M., Sousa, I. F. A. D., ... and Pitondo-Silva, A. (2021). Multidrug-resistant (MDR) *Klebsiella variicola* strains isolated in a Brazilian hospital belong to new clones. *Frontiers in Microbiology*, 12, 604031.
- [8] Deku, J. G., Aninagyei, E., Bedzina, I., Goloe, F. E., Eshun, V. A., Agyei, E., ... and Duedu, K. O. (2024). The Bacterial Species Behind the Wound and Their Antibacterial Resistant Pattern: A Three-Year Retrospective Study at St. Dominic Hospital, Akwetia, Ghana. *Journal of Clinical Laboratory Analysis*, 38(22), e25114.
- [9] Dworniczek, E., Piwowarczyk, J., Bania, J., Kowalska-Krochmal, B., Wałecka, E., Seniuk, A., Dolna, I., and Gościński, G. (2012). Enterococcus in wound infections: Virulence and antimicrobial resistance. *Acta Microbiologica et Immunologica Hungarica*, 59(2), 263-269.
- [10] Farsi, S., Salama, I., Escalante-Alderete, E., and Cervantes, J. (2023). Multidrug-resistant enterococcal infection in surgical patients, what surgeons need to know. *Microorganisms*, 11(2), 238.
- [11] Fonseca, E. L., da Veiga Ramos, N., Andrade, B. G. N., Moraes, L. L., Marin, M. F. A., and Vicente, A. C. P. (2017). A one-step multiplex PCR to identify *Klebsiella pneumoniae*, *Klebsiella variicola*, and *Klebsiella quasipneumoniae* in the clinical routine. *Diagnostic microbiology and infectious disease*, 87(4), 315-317.
- [12] Fontana, L., Bonura, E., Lyski, Z., and Messer, W. (2019). The brief case: *Klebsiella variicola*—identifying the misidentified.
- [13] Guerra, M. E. S., Destro, G., Vieira, B., Lima, A. S., Ferraz, L. F. C., Hakansson, A. P., ... and Converso, T. R. (2022). *Klebsiella pneumoniae* biofilms and their role in disease pathogenesis. *Frontiers in cellular and infection microbiology*, 12, 877995.
- [14] Hussien, K. S., Abdulmughni, G. T., Othman, A. M., Al-Shami, H. Z., Al-Haidary, N. M., Assayaghi, R. M., and Jahzer, K. H. (2025). Antimicrobial susceptibility patterns of bacteria isolated from wound infections in Al-Bayda Governorate-Yemen. *BMC Infectious Diseases*, 25(1), 868.
- [15] Ibraheem, S., Salih, W. H., and Majeed, S. Z. (2025). Microbial Diversity and Antibiotic Resistance Patterns in Burn and Wound Infections: A Study from the Al-Kindy Teaching Hospital, Iraq. *Babcock University Medical Journal*, 8(1), 118-131.
- [16] Imai, K., Ishibashi, N., Kodana, M., Tarumoto, N., Sakai, J., Kawamura, T., ... and Maesaki, S. (2019). Clinical characteristics in blood stream infections caused by *Klebsiella pneumoniae*, *Klebsiella variicola*, and *Klebsiella quasipneumoniae*: a comparative study, Japan, 2014–2017. *BMC infectious diseases*, 19(1), 946.
- [17] Iregbu, K. C., Uwaezuoke, N. S., Nwajiobi-Princewill, I. P., Eze, S. O., Medugu, N., Shettima, S., and Modibbo, Z. (2013). A profile of wound infections in National Hospital Abuja. *African journal of clinical and experimental microbiology*, 14(3), 160-163.

- [18] Iyun, A. O., Isamah, C. P., Ademola, S. A., Olawoye, O. A., Michael, A. I., Aderibigbe, R. O., and Oluwatosin, O. M. (2024). The incidence and prevalence of chronic wounds from a major plastic surgery service from a metropolitan city in south western Nigeria: A sixteen-year retrospective review. *Journal of Tissue Viability*, 33(4), 877-882.
- [19] Khalid, F., Poulose, C., Farah, D. F. M., Mahmood, A., Elsheikh, A., and Khojah, O. T. (2024). Prevalence and Antimicrobial Susceptibility Patterns of Wound and Pus Bacterial Pathogens at a Tertiary Care Hospital in Central Riyadh, Saudi Arabia. *Microbiology Research*, 15(4), 2015-2034.
- [20] Legese, M. H., Asrat, D., Mihret, A., Hasan, B., Aseffa, A., and Swedberg, G. (2025). Genomic characterizations of *Klebsiella variicola*: emerging pathogens identified from sepsis patients in Ethiopian referral hospitals. *Emerging Microbes and Infections*, 14(1), 2440494.
- [21] Linz, M. S., Mattappallil, A., Finkel, D., and Parker, D. (2023). Clinical impact of *Staphylococcus aureus* skin and soft tissue infections. *Antibiotics*, 12(3), 557.
- [22] Mansoor, T., Angmo, D., and Nehvi, N. (2024). Prevalence and antimicrobial susceptibility of wound pathogens in a tertiary care hospital in Kashmir: A cross-sectional study. *Infection and Chemotherapy*, 56(4), 502.
- [23] Mengistu, D. A., Alemu, A., Abdukadri, A. A., Mohammed Husen, A., Ahmed, F., and Mohammed, B. (2023). Incidence of urinary tract infection among patients: systematic review and meta-analysis. *INQUIRY: The Journal of Health Care Organization, Provision, and Financing*, 60, 00469580231168746.
- [24] Monk, E. J., Jones, T. P., Bongomin, F., Kibone, W., Nsubuga, Y., Ssewante, N., ... and van Zandvoort, K. (2024). Antimicrobial resistance in bacterial wound, skin, soft tissue and surgical site infections in Central, Eastern, Southern and Western Africa: a systematic review and meta-analysis. *PLOS global public health*, 4(4), e0003077.
- [25] Nobel, F. A., Islam, S., Babu, G., Akter, S., Jebin, R. A., Sarker, T. C., ... and Islam, M. J. (2022). Isolation of multidrug resistance bacteria from the patients with wound infection and their antibiotics susceptibility patterns: A cross-sectional study. *Annals of Medicine and Surgery*, 84, 104895.
- [26] Oladeinde, B. H., Omoregie, R., Olley, M., Anunibe, J. A., and Onifade, A. A. (2013). A 5-year surveillance of wound infections at a rural tertiary hospital in Nigeria. *African health sciences*, 13(2), 351-356.
- [27] Olawale, K. O., Fadiora, S. O., and Taiwo, S. S. (2011). Prevalence of hospital acquired enterococci infections in two primary-care hospitals in Osogbo, Southwestern Nigeria. *African journal of infectious diseases*, 5(2).
- [28] Onwuezobe, I. A., Matthew, P. C., and Oyoyo, A. O. (2020). Bacteriological Profiles of Pyogenic Wound Infection among Adults with Antibiotic Susceptibility Pattern at a Tertiary Hospital in Nigeria. *International Journal of TROPICAL DISEASE and Health*, 41(13), 39-50.

- [29] Pandukur, S. G., Sambo, T. T., and Plangnan, A. G. (2020). Prevalence of bacterial pathogens associated with wound infections from diabetic out-patients at Plateau Specialist Hospital, Jos, Nigeria. *Open Journals Nigeria (OJN)*, 1, 1-11.
- [30] Puca, V., Marulli, R. Z., Grande, R., Vitale, I., Niro, A., Molinaro, G., ... and Di Giovanni, P. (2021). Microbial species isolated from infected wounds and antimicrobial resistance analysis: Data emerging from a three-years retrospective study. *Antibiotics*, 10(10), 1162.
- [31] Rajkumari N, Mathur P, Misra MC. Soft Tissue and Wound Infections Due to Enterococcus spp. Among Hospitalized Trauma Patients in a Developing Country. *J Glob Infect Dis*. 2014 Oct;6(4):189-93.
- [32] Ramakrishnan, R., Nair, A. V., Parmar, K., Rajmani, R. S., Chakravortty, D., and Das, D. (2024). Combating biofilm-associated *Klebsiella pneumoniae* infections using a bovine microbial enzyme. *npj Biofilms and Microbiomes*, 10(1), 119.
- [33] Reddy, S., Singh, C. D., Kumar, S., and Muthusamy, R. (2024). Prevalence and Antibiotic Resistance of *Klebsiella pneumoniae* in Diabetic Foot Ulcer. *Cureus*, 16(8).
- [34] Rezaei, A. R., Zienkiewicz, D., and Rezaei, A. R. (2025). Surgical site infections: a comprehensive review. *Journal of Trauma and Injury*.
- [35] Rodríguez-Medina, N., Barrios-Camacho, H., Duran-Bedolla, J., and Garza-Ramos, U. (2019). *Klebsiella variicola*: an emerging pathogen in humans. *Emerging microbes and infections*, 8(1), 973-988.
- [36] Rubio-Canalejas, A., Baelo, A., Herbera, S., Blanco-Cabra, N., Vukomanovic, M., and Torrents, E. (2022). 3D spatial organization and improved antibiotic treatment of a *Pseudomonas aeruginosa*–*Staphylococcus aureus* wound biofilm by nanoparticle enzyme delivery. *Frontiers in Microbiology*, 13, 959156.
- [37] Sen, C. K. (2021). Human wound and its burden: updated 2020 compendium of estimates. *Advances in wound care*, 10(5), 281-292.
- [38] Siddiqui, A. R., and Bernstein, J. M. (2010). Chronic wound infection: facts and controversies. *Clinics in dermatology*, 28(5), 519-526.
- [39] Wei, Y., Palacios Araya, D., and Palmer, K. L. (2024). *Enterococcus faecium*: evolution, adaptation, pathogenesis and emerging therapeutics. *Nature Reviews Microbiology*, 22(11), 705-721.
- [40] Yao, Z., Niu, J., and Cheng, B. (2020). Prevalence of chronic skin wounds and their risk factors in an inpatient hospital setting in northern China. *Advances in skin and wound care*, 33(9), 1-10.
- [41] Yucens, M., Sari, T., Aydemir, N., Öztürk, S. S., Akman, A., Inal, O., and Demirkhan, F. (2025). Evaluation of pathogens isolated from wound infections and their antibiotic susceptibility profiles in a wound care unit. *The Journal of Infection in Developing Countries*, 19(09), 1351-1358.

- [42] Zhou, X., Willems, R. J., Friedrich, A. W., Rossen, J. W., and Bathoorn, E. (2020). Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. *Antimicrobial Resistance and Infection Control*, 9(1), 130.
- [43] Zuniga, J., Mungai, M., Adhiambo, M., Kwambai, M., Obanda, L., Jemeli, H., ... and Gardner, A. (2025). Wound burden: A point prevalence study at an academic hospital in Western Kenya. *International Journal of Africa Nursing Sciences*, 22, 100841.