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ABSTRACT    
 Seasonal influenza in Indonesia exhibits a complex temporal pattern not fully explained by conventional 
seasonal models. This study develops and compares two mathematical models of its transmission dynamics: an SEIRS 
model with Seasonal Forcing and a Hybrid SEIRS–Gaussian Model. The models were calibrated using weekly 
surveillance data from WHO FluNet (June 2023–October 2025). BDS test and Recurrence Quantification Analysis 
(RQA) confirmed the deterministic nonlinear nature and strong seasonal pattern in the data, supporting the deterministic 
modeling approach. The systems of differential equations were solved numerically using the 4th-order Runge–Kutta 
(RK4) method, and parameter calibration was optimized with a differential evolution algorithm. Simulation results 
demonstrate that the Hybrid SEIRS–Gaussian Model achieves significantly greater accuracy in replicating observed 
data, with an RMSE of 11.847 , a Pearson correlation of 0.854, and an 2R of 0.696, compared to the pure seasonal 
SEIRS model (RMSE 24.987, 2R  −0.353). These findings indicate that influenza transmission in Indonesia is not solely 
dependent on seasonal cycles but is also influenced by sporadic exogenous factors. Consequently, the hybrid model 
incorporating a Gaussian component proves more representative and reliable for analyzing and predicting influenza 
dynamics within the context of Indonesian tropical epidemiology. 
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1.  INTRODUCTION                   
 

Seasonal influenza remains a significant global health threat. According to the World Health 
Organization (WHO), annual influenza epidemics result in an estimated 3 to 5 million cases of severe 
illness and 290,000 to 650,000 respiratory-related deaths globally. This impact is exacerbated by the high 
vulnerability of specific groups, including children, the elderly, pregnant women, and individuals with chronic 
conditions, who consistently show higher rates of complications and mortality in epidemiological studies [1], 
[2], [3]. In Indonesia, influenza transmission dynamics are influenced by tropical conditions, manifesting 
distinct temporal patterns that can include dual-peak patterns associated with the rainy season [4]. Indonesia's 
national influenza surveillance system, integrated with the WHO's Global Influenza Surveillance and 
Response System (GISRS) network, generates weekly positive specimen data that are invaluable for 
monitoring trends and detecting outbreaks. 

Mathematical modeling has been extensively employed to understand influenza dynamics. Previous 
studies include SEIR models [5], fractional-order SEIR models [6], outbreak prediction using ILI (Influenza-
like Illness) data [7], and estimation of key epidemiological parameters such as the basic reproduction number 

0R using advanced statistical methods [8]. At the population level, deterministic compartment-based models 
such as SEIR (Susceptible-Exposed-Infectious-Recovered) and SEIRS (which accommodates temporary 
immunity) form the foundation of many studies due to their simplicity and ability to capture disease dynamics 
at a macro level [9]. To reflect the annual case fluctuations characteristic of seasonal diseases, these models 
are often modified by incorporating seasonal forcing, i.e., the modulation of transmission rates using periodic 
functions [10], [11]. 

Modeling approaches that integrate periodic functions into the transmission rate have long been 
recommended for representing annual epidemic cycles [12]. Recent research by [13] successfully integrated 
a Gaussian function into an SIR-SI model to represent exogenous factors in dengue cases in Peru. A similar 
approach has potential for adaptation to influenza, given the presence of periodic outbreak patterns not fully 
captured by conventional seasonal models. 

Despite this progress, several research gaps remain. First, no study has yet compared mechanistic and 
hybrid models incorporating Gaussian components for influenza in Indonesia. Second, from a computational 
methodology standpoint, few journals explicitly discuss and justify the selection of the 4th-order Runge-Kutta 
(RK4) numerical method for solving systems with seasonal forcing and exogenous components [14]. 

Addressing these gaps, this study aims to: (1) develop and compare a Seasonal SEIRS model and 
a Seasonal SEIRS model with Gaussian Forcing, (2) implement the 4th-order Runge-Kutta (RK4) method as 
the numerical solver, and (3) evaluate model performance based on statistical metrics. The models will be 
calibrated and validated using time-series data of positive influenza specimens from WHO FluNet for 
Indonesia for the period June 2023–October 2025. 
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2.  MATERIALS AND METHODS 

 
2.1.  Data Source             
 

Influenza positive case data were obtained from WHO FluNet for the period June 1, 2023, to October 
13, 2025. The data consist of the number of laboratory-confirmed positive influenza specimens reported by 
surveillance facilities in Indonesia.  

 

 
Figure 1. WHO FluNet Surveillance Data for Seasonal Influenza Cases in Indonesia, accessed from the 

FluNet Chart World Health Organization (WHO) platform at: 
https://worldhealthorg.shinyapps.io/flunetchart/. 

 
Figure 1. displays weekly data of positive influenza specimens in Indonesia, which show a clear seasonal 

pattern along with spikes in cases outside the main seasonal period. The arrows on the recurrent peaks at the 
end to the beginning of the year mark a consistent seasonal pattern, generally associated with the rainy season. 
Meanwhile, the arrows on the irregularly occurring mid-year increases indicate the presence of outbreaks that 
cannot be fully explained by seasonal mechanisms. These characteristics indicate that the dynamics of 
influenza in Indonesia are influenced not only by periodic factors but also by sporadic exogenous disturbances. 
This motivates the use of a hybrid model that combines seasonal forcing and a Gaussian component. 
 
2.2. Preliminary Statistical Tests: BDS and Determinism Test 

 
Prior to model development, we characterized the nonlinear and deterministic nature of the influenza 

time series using the Brock–Dechert–Scheinkman (BDS) test to detect nonlinear dependence [15], 
and Recurrence Quantification Analysis (RQA) to quantify the degree of determinism in the dynamical system 
[16]. 
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BDS Test for Nonlinear Dependence 

The BDS test examines whether a time series exhibits nonlinear dependence. The test statistic is based 
on the correlation integral and is defined as: 
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where  is the sample size,   is the threshold distance, and ,n m  is the standard deviation under the null 

hypothesis of independent and identically distributed (i.i.d.) data.. 

The test was applied to the residuals of an ARIMA model fitted to the influenza data. Results for 
embedding dimensions 2,3, 4m   and thresholds   expressed in standard deviations are shown in Table 2. 
All ݌-values were below 0.05, rejecting the i.i.d. hypothesis and confirming significant nonlinear structure. 

 
 

Table 1. BDS Test Results for Influenza Data Residuals 

  
p value  5.8071   11.6141  17.4212  23.2282 

2m   2e-04 0 0 0.0002 
3m   0 0 2e-04 0.0020 
4m   0 0 1e-04 0.0015 

 
 
Recurrence Quantification Analysis (RQA) 

RQA measures determinism in time series through recurrence plots. The recurrence matrix is defined 
as: 

 ,i j i jR H x x   ,      , 1,...,i j N  

 
where H is the Heaviside function, ix are embedded state vectors, and   is a recurrence threshold. The 
determinism (DET) is calculated as: 
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with ( )P l being the distribution of diagonal line lengths l . 

The recurrence plot (Figure 2) showed clear diagonal patterns. Key RQA measures were: 
Determinism DET = 0.7075, Recurrence Rate = 0.119, Laminarity = 0.8038, Entropy = 1.5947. 
The high DET  value (> 0.7) indicates strong deterministic dynamics, supporting the use of deterministic 
models. 
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Figure 2. Recurrence plot of influenza time series (117×117). 

 
The significant nonlinearity (BDS test) and high determinism (RQA) justify a deterministic SEIRS 

modeling approach augmented with non-periodic forcing to capture irregular outbreaks. These results validate 
the hybrid SEIRS–Gaussian structure proposed in this study. 

 
2.3. Model 

 
Based on the characteristic seasonal pattern observed in Indonesian influenza data, the mathematical 

models developed in this study are SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) models. 
The SEIRS structure was chosen due to the nature of the influenza virus, which allows recovered individuals 
to become susceptible again after a certain period due to waning immunity, as explained by [14]. 

The system of ordinary differential equations (ODEs) describing population dynamics was derived 
based on the S, E, I, R compartments, incorporating birth and death rates (μ), progression rate from exposed 
to infectious (σ), recovery rate (γ), and immunity loss rate (ω). These SEIRS equations are adopted from [17]. 
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where N S E I R    is the total population. 
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Model 1: SEIRS with Seasonal Forcing 

To accommodate the observed seasonal pattern, the transmission rate is formulated as a periodic function 
of time: 

 

  0
21 cos
52

tt            
             (2) 

 
 
where 0 is the base transmission rate, α is the amplitude of seasonal forcing,   adjusts the phase shift to align 
peak transmission timing, and t is time in weeks [4]. 
 
Model 2: SEIRS with Seasonal and Gaussian Forcing (Hybrid) 

Indonesian influenza data show additional outbreaks beyond the regular seasonal pattern. Therefore, a 
Gaussian component is integrated to represent these exogenous outbreaks, adapting the approach of [13] for 
dengue modeling: 
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where ℎ௜, ܿ௜,  .௜ represent the amplitude, center, and width of the i-th outbreak, respectivelyݓ
 

 
2.4. Model Parameters 

 
Parameter values for the SEIRS model were derived from epidemiological literature, Indonesian 

demographic data, and calibrated against influenza surveillance data. The baseline values were selected based 
on established references and then refined through optimization. For the Seasonal SEIRS model, the 
transmission rate follows a periodic function to capture annual cycles, while the Hybrid model incorporates 
additional Gaussian components to represent sporadic outbreaks beyond regular seasonal patterns. 

 
Table 2. Parameter values for the seasonally forced SEIRS model. 

 
Parameter Definition Baseline Value Source 

 ଴ Baseline transmission rate 0.4 Initial assumptionߚ
 Seasonal amplitude 0.2 Initial assumption ߙ
 Infection progression rate 1/1,4  [14] ߪ

 Recovery rate 1/7  [12] ߛ

߱ Immunity loss rat 1/365  Assumed 
 Birth/death rate 1/(70*365) BPS Indonesia ߤ

 



- 45 - 
 

World Scientific News 211 (2026) 45-51 

Surveillance Scaling Factor 

A surveillance scaling factor (scale) was incorporated to align simulated prevalence with observed case 
counts since WHO FluNet data reflect laboratory-confirmed specimens rather than true population-level 
incidence. The relationship is defined as: 

 
Reported cases ( )t  ( )scale I t  

 
The initial scale value of 0.05 assumes that a modest proportion of infections are captured by the surveillance 
network. This parameter was subsequently calibrated simultaneously with β₀ and α. 

Gaussian Outbreak Parameters 

The Hybrid SEIRS-Gaussian model extends the seasonal model by including Gaussian outbreak terms 
with parameters ℎ௜ (amplitude), ܿ௜ (center time), and ݓ௜ (width) that were initialized as ℎ௜ = 0.2, ܿ௜ at mid-
series, and ݓ௜ = 3 weeks, then calibrated alongside β₀ and α. 

 
2.5. Numerical Method and Calibration 

 
The nonlinear system of ordinary differential equations incorporating seasonal and Gaussian forcing 

terms was solved numerically using the 4th-order Runge-Kutta (RK4) method. This explicit integrator 
provides a balanced compromise between accuracy and computational efficiency for stiff, time-varying 
dynamical systems [14]. With a weekly time step (ℎ = 1 week), the RK4 update for each 
compartment ݕ (i.e., ܵ, ,ܧ ,ܫ ܴ) is computed as: 
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(4) 

where ℎ denotes the right-hand side of the SEIRS equations (1).  
 
Parameter calibration was carried out via the Differential Evolution (DE) algorithm [18], a 

population-based global optimizer well-suited to nonlinear, multi-modal objective landscapes. The algorithm 
was initialized with a population of ܰܲ = 15 candidate vectors whose components were randomly sampled 
within biologically plausible bounds: 0 [0.1,5.0]  , [0.01,1.0] , [ , ]   , and the surveillance scaling 
factor scale [0.001,0.5] .  
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For the hybrid model, Gaussian outbreak parameters were likewise bounded: amplitude [0,1]ih  centers

[0, ]ic T (where ܶ is the length of the time series in weeks), and widths [0,10]iw  weeks.  
During each generation, mutant vectors were created using the “rand/1” mutation strategy with a scaling 

factor ܨ = 0.8, followed by binomial crossover with probability ܴܥ = 0.7. Selection retained the vector that 
yielded the lower root-mean-square error (RMSE) between simulated and observed weekly case counts: 
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The evolution proceeded for a maximum of ܩ୫ୟ୶ = 30 generations or until convergence was detected. 

A final local refinement step using the L-BFGS-B algorithm ensured that the solution corresponded to a local 
minimum of the objective function.  

 
2.6. Model Evaluation 
 

Model performance was evaluated using a suite of complementary statistical metrics that assess 
accuracy, correlation, and goodness-of-fit [19]. The following measures were calculated for each model: 
Root Mean Square Error (RMSE) 

Quantifies the average magnitude of prediction errors, with lower values indicating better fit: 
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Mean Absolute Error (MAE) 

Provides a robust measure of average absolute deviation that is less sensitive to outliers than RMSE: 

   
1

1 T

sim obs
t

MAE I t I t
T 

  .  

Pearson Correlation Coefficient (ݎ) 
Measures the linear association between simulated and observed time series, with values near ±1 

indicating strong directional agreement: 
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Coefficient of Determination (ܴଶ) 
Indicates the proportion of variance in the observed data that is explained by the model: 
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These metrics collectively provide a comprehensive assessment of model fidelity: RMSE and MAE quantify 
error magnitude, ݎ assesses temporal alignment, and ܴଶ evaluates overall explanatory power. 
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3.  RESULT AND DISCUSSION 
3.1. Results 

 
The influenza dataset used in this study was obtained from WHO FluNet from June 1, 2023, to October 

13, 2025, comprising a total of 124 weekly data points and 2,685 positive influenza cases. These data represent 
the number of specimens collected through Indonesia's national influenza surveillance and laboratory-
confirmed as positive for influenza. The specimens are reported by surveillance facilities integrated into the 
WHO's GISRS network. BDS and RQA test results confirmed that Indonesian influenza data are deterministic 
nonlinear, with a strong seasonal pattern and periodic outbreaks. The DET value of 0.7075 supports the use 
of deterministic models such as SEIRS. 

 

 
Figure  3. Comparison of SEIRS model simulation results with WHO data for Indonesia (2023–2025) 

 
Simulation results implementing the RK4 numerical method (4), presented in Figure 3, show that 

the Hybrid SEIRS-Gaussian model performs significantly better in replicating the temporal pattern of 
observed data compared to the Seasonal SEIRS model. The hybrid model not only captures the main seasonal 
peaks (October–January) but also the mid-year case increases that the Seasonal SEIRS model could not 
produce. 

The performance and calibration of both models are presented in Table 3, Table 4, and Figure 4. 
The Seasonal SEIRS model yielded unsatisfactory performance with an RMSE of 24.987, MAE of 20.255, 
and a negative R² (-0.353). This indicates that the conventional seasonal model is insufficient to capture the 
variation in Indonesian influenza data, which shows additional outbreak patterns beyond the regular seasonal 
cycle. 
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Table 3. Performance Comparison of SEIRS Models. 

Model RMSE MAE Correlation (ݎ) ܴଶ 
SEIRS Seasonal 24.987 20.255 0.430 -0.353 

Hybrid SEIRS-Gaussian 11.847 8.716 0.854 0.696 
 
Conversely, the Hybrid SEIRS-Gaussian model showed significantly better performance with an RMSE 

of 11.847 (52.6% lower than the baseline model), MAE of 8.716, and a Pearson correlation coefficient of 
0.854. An R² value of 0.696 indicates that the hybrid model can explain 69.6% of the variation in the observed 
data. 

Parameter calibration results for both models can be seen in Table 4. The differential evolution algorithm 
was used to minimize the Root Mean Square Error (RMSE) between simulation and observed data. 

 
Table 4. Calibrated Parameters for the Seasonal SEIRS and Hybrid SEIRS-Gaussian Models. 

 

Parameter Definition SEIRS 
Seasonal 

Hybrid SEIRS-
Gaussian Unit 

β₀ Baseline transmission rate 2.161 1.437 week⁻¹ 

α Amplitude of seasonal 
forcing 0.400 0.146 - 

  Seasonal phase shift -2.076 -0.824 radian 

Scale Data scaling factor for 
specimens 0.056 0.034 - 

I₀ Initial infectious individuals 18.2 15.8 individuals 
E₀ Initial exposed individuals 27.3 23.7 individuals 
R₀ Initial recovered individuals 9.1 7.9 individuals 
h₁ Amplitude of first Gaussian - 0.705 - 

c₁ Peak position of first 
Gaussian - 69.7 week 

w₁ Width of first Gaussian - 4.1 week 

h₂ Amplitude of second 
Gaussian - 0.755 - 

c₂ Peak position of second 
Gaussian - 112.9 week 

w₂ Width of second Gaussian - 10.0 week 
 
The lower β₀ value of 1.437 in the hybrid model compared to 2.161 week⁻¹ in the seasonal model 

indicates that the model with a Gaussian component requires a lower base transmission rate to fit the data, as 
additional transmission increases are provided by the Gaussian component during outbreak periods. The 
significant decrease in α from 0.400 to 0.146 in the hybrid model indicates that seasonal variation plays a 
smaller role when exogenous (Gaussian) factors are considered. 

Figure 4. shows the residuals for both models. The Seasonal SEIRS model produces systematic errors 
with a clear residual pattern, while the hybrid model shows a more random residual distribution with smaller 
variance. This indicates that the hybrid model has successfully accommodated the nonlinear structure in the 
data. 
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Figure 4. Residuals of the Seasonal SEIRS and Hybrid Seasonal-Gaussian SEIRS Models. 

 
Figure 3. shows that the residual standard deviation of the Hybrid SEIRS-Gaussian Model (11.3 

specimens) is significantly lower than that of the Seasonal SEIRS Model (20.5 specimens). Although the 
modeled data originates from specimen-based surveillance—reflecting laboratory testing capacity—this 
difference indicates that the hybrid model has higher consistency in replicating the temporal dynamics of 
surveillance data. This level of precision makes it more reliable for identifying the timing of increased 
influenza activity, thus potentially supporting more effective surveillance response planning and laboratory 
resource allocation. 
 
3.2.  Discussion  
 

This study departs from the observation that seasonal influenza patterns in Indonesia exhibit two main 
characteristics: (1) regular seasonal peaks occurring around the end and beginning of the year, and (2) 
increased cases during periods outside the main seasonal peak. These characteristics pose a challenge for 
standard seasonal SEIRS models as the data pattern does not fully follow a single periodic function. 

Preliminary analysis via the BDS test confirmed nonlinear dependence in the data, while the determinism 
value (DET = 0.7075) from RQA indicates that influenza dynamics have a strong deterministic structure. This 
provides a valid basis for using mechanistic SEIRS models. 

Simulations using the 4th-order Runge-Kutta (RK4) numerical method were implemented due to its 
stability and accuracy for nonlinear systems with time-varying parameters. The key findings from the 
simulations are: First, the SEIRS model with seasonal forcing can capture the basic seasonal pattern but fails 
to represent additional outbreaks. This is evident from the high RMSE (24.987) and negative R² (-0.353), 
indicating model inadequacy for the complexity of Indonesian data. Second, the Hybrid SEIRS–Gaussian 
model successfully captured both types of peaks, both seasonal and those appearing sporadically. 

 



- 50 - 
 

World Scientific News 211 (2026) 50-51 

The addition of the Gaussian component allows the model to represent exogenous disturbances affecting 
case increases, such as climate variability, population mobility, or viral circulation changes. This component 
results in a significant model performance improvement: RMSE decreased by over 50% (to 11.847), MAE 
decreased, and residuals were more randomly distributed. This confirms that influenza dynamics in Indonesia 
are a combination of seasonal and non-seasonal factors. 

Parameter differences also provide insight into transmission mechanisms. The lower ߚ଴ value in the 
hybrid model (1.437 vs. 2.161 week⁻¹) indicates that with the Gaussian addition, the base transmission rate 
need not be as high as in the pure seasonal model to explain the data. Meanwhile, the smaller seasonal 
amplitude ߙ (0.146 vs. 0.400) indicates that seasonal factors still play a role, but the contribution of exogenous 
outbreaks is more dominant in explaining data variation. 

Overall, the findings demonstrate that for tropical countries like Indonesia, seasonal representation alone 
is insufficient. Influenza is influenced by complex dynamics involving climatic instability, population 
heterogeneity, and other epidemiological factors; therefore, the hybrid model offers a more realistic approach. 
This model has the potential to become a more reliable tool for surveillance and public health planning. For 
future development, integrating more specific exogenous data, such as mobility or humidity data, could 
enhance the model's predictive capability. 
 
4.  CONCLUSION 
 

This study concludes that influenza transmission dynamics in Indonesia cannot be fully explained by a 
model with seasonal forcing alone, as the data exhibit deterministic nonlinear patterns with case increases 
outside the main seasonal peak. Performance analysis proves that the Hybrid SEIRS–Gaussian Model is 
significantly more accurate than the Seasonal SEIRS model, with an RMSE of 11.847 (a reduction of >50%), 
a correlation of 0.854, and an R² of 0.696. These findings confirm that integrating a Gaussian component 
successfully represents exogenous outbreaks not captured by the seasonal function alone. Therefore, the 
hybrid model is more representative for the complex epidemiological context in Indonesia and has the 
potential to support more adaptive and data-driven surveillance policies and public health responses. 
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