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ABSTRACT 
 This study analyzes the robustness and efficiency of Internal Rate of Return (IRR) calculations under 
stochastically fluctuating cash flow conditions. Three numerical methods are compared: Newton–Raphson, Secant, and 
the Proposed Optimal Numerical Method (PONM). Empirical datasets and lognormal stochastic simulations are used to 
test algorithmic performance against volatility and random disturbances. Experimental results show that PONM 
achieves the fastest convergence, with an average of 5.98 iterations, a success ratio of 99.5%, and the smallest deviation 
= ߪ  0.0095. Robustness and sensitivity tests show that PONM has the lowest Coefficient of Variation and Shock 
Sensitivity, indicating the highest numerical stability. With a fourth-order convergence, PONM proves more efficient 
and robust to noise than classical methods. These findings confirm the relevance of PONM as an optimal algorithm for 
IRR calculations in a highly volatile investment environment. 
 
Keywords: Internal Rate of Return, Cash Flow Volatility, Stochastic Simulation, Root-Finding Method, Proposed 
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1.  INTRODUCTION 

The concept of the Internal Rate of Return (IRR) has long been a key pillar in investment evaluation and 
capital budgeting theory. Historically, the idea of IRR emerged from classical economic debates rooted in the 
idea of [1], [2] and [3] which discusses the relationship between capital efficiency and a “fair” rate of return 
on investment. In the modern framework, IRR is understood as the internal rate of return that equalizes the 
present value of a project's cash inflows and outflows, thus reflecting the balance between investment and 
future financial benefits [4]. This concept has become a universal measure in assessing project profitability 
because it is intuitive, easy to interpret, and can be directly compared with other benchmarks such as return 
on investment (ROI) or cost of capital [5]. The Internal Rate of Return (IRR) is a central metric in the 
assessment of investment projects. It is widely used in corporate and investment practice as a measure of 
relative returns; however, it has several conceptual and numerical limitations that are important for application 
to real cash flows [6]. 

In modern finance, project cash flows often exhibit high volatility, with large fluctuations, 
unconventional signs, and the presence of noise [7]. This situation creates two critical problems for the IRR: 
first, the emergence of more than one root (multiple IRRs) or the absence of a single solution to the net present 
value equation; second, extreme sensitivity, where the IRR value changes sharply due to small changes in cash 
flow components, making interpretation and decision-making difficul [8]. Modern finance literature 
emphasizes that the multiple IRR phenomenon is not simply a numerical anomaly, but rather a structural 
problem that requires a more robust conceptual and mathematical approach [9].  

IRR calculations rely on numerical root finding methods such as Newton-Raphson, secant, and their 
variations [10]. However, these classical methods often fail to converge or produce unstable results when the 
present value function has a small gradient, multiple roots, or initial guesses far from the true roots. Several 
numerical engineering studies have proposed Newton variants and intelligent initialization methods, but 
efficiency and stability remain major challenges [11]. Therefore, a more robust, efficient numerical approach 
is needed that is capable of handling volatile cash flow conditions [12]. Moreover, recent numerical finance 
research demonstrates that cash-flow patterns with multiple sign reversals or irregular timing significantly 
increase the likelihood of non-convergence and spurious IRR solutions, reinforcing the need for numerical 
schemes that are less sensitive to input volatility [13]. In addition, comparative numerical investigations have 
shown that classical Newton-based algorithms often converge to incorrect roots or diverge entirely when the 
NPV function is highly non-linear due to alternating or unevenly distributed cash-flow patterns, and that 
hybrid approaches incorporating bracketing have produced more stable IRR estimates under such volatility 
[14]. 

There is a gap at the intersection of three research domains that have been running separately, namely: 
(a) capital budgeting theory that discusses the characteristics of IRR and the problem of multiple IRRs, (b) 
sensitivity analysis and the resilience of IRR to cash flow volatility, and (c) the development of optimal 
numerical methods to determine IRR efficiently and stably. Most previous studies have only highlighted one 
aspect separately, so there is still little research that combines all three in an integrated manner, namely, 
examining the behavior of IRR under cash flow volatility while simultaneously testing the effectiveness of 
higher-order numerical methods such as Proposed Optimal Numerical Method (PONM) under these 
conditions. 
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This research aims to design and test a robust numerical-analytical framework for IRR under cash flow 
volatility, using the PONM, that is a fourth-order root-finding method that requires only the evaluation of 
functions and their derivatives and has robust local and semilocal convergence analysis. PONM offers a 
balance between computational efficiency and robustness to adverse initial conditions, making it particularly 
relevant for sensitive IRR problems. Mathematically, PONM is developed from a combination of the 
Chebyshev–Halley and Potra–Pták methods and satisfies the optimality constraints according to the Kung–
Traub criterion [15]. 

This study comprehensively analyzes the effect of cash flow volatility on the mathematical behavior of 
IRR and the effectiveness of the numerical methods used in its determination. Analytically, this study 
examines how the characteristics of cash flow volatility—such as variance, autocorrelation, and shock 
scenarios. This will affect the root structure of the net present value equation, including the number of real 
roots, the closeness between the roots, and their local sensitivity. Numerically, PONM is applied to calculate 
IRR under various volatile cash flow scenarios, then compared with classical methods such as Newton and 
Halley based on iteration efficiency, radius of convergence, and robustness to stochastic disturbances. 

Therefore, the findings of this study deliver three integrated forms of contribution. First, a 
methodological contribution in the form of adopting and validating the Proposed Optimal Numerical Method 
(PONM) as an efficient algorithm for IRR computation under volatile cash flow conditions. Second, a 
theoretical contribution by establishing a mathematical characterization of IRR sensitivity with respect to 
stochastic fluctuations in cash flows—linking NPV root geometry, variance dynamics, and convergence 
behavior of numerical algorithms. Third, an applicative contribution, by formulating practical investment 
guidelines that inform investors on how cash flow volatility and numerical robustness influence the reliability 
of IRR-based decision-making. 
 
 
2. MATERIAL AND METHODS 
 
2.1. Research Design and Data Setup 

This study adopts a quantitative–computational design to estimate the Internal Rate of Return (IRR) 
under conditions of stochastically fluctuating cash flows. Conceptually, IRR is defined as the root of the Net 
Present Value (NPV) function: 

(ݎ)݂ = ෍
௧ܨܥ

(1 + ௧(ݎ

்

௧ୀ଴

= 0, (1) 

 
where ܨܥ௧ denotes the cash flow at period ݐ, and ݎ represents the internal rate of return. To obtain the roots of 
the NPV equation efficiently and stably, this study employs the Proposed Optimal Numerical Method 
(PONM)—a fourth-order iterative method requiring only two function evaluations and one derivative per 
iteration, and satisfying the Kung–Traub optimality conjecture. PONM is compared with two classical 
algorithms—Newton–Raphson and Secant—to assess robustness, convergence speed, and numerical stability 
under cash flow volatility. 
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The data used in this research consists of two complementary components: synthetic and empirical 
datasets. Synthetic data enables controlled simulation of market conditions with varying levels of volatility, 
while empirical data serves as a real-market benchmark to validate the simulation outcomes. The synthetic 
dataset is generated through stochastic simulation, whereas the empirical dataset is taken from the corporate 
and financial sectors. 

Synthetic cash flows are generated based on three probabilistic models to represent diverse real-world 
financial dynamics: (i) a lognormal distribution to characterize conventionally positive cash flows with right-
skewed volatility, (ii) a Student-(t) distribution to model extreme fluctuations and heavy-tailed behavior, and 
(iii) a GARCH(1,1) model to capture clustered volatility over time. These simulations incorporate empirical 
parameter calibration derived from real data and are executed over a one-year horizon (ݐ = 0,1, … ,10). Three 
volatility regimes are applied—low, moderate, and high—by scaling the volatility parameter σ to 0.5σ, σ, and 
1.5σ. In total, each model–volatility combination generates 10,000 Monte Carlo scenarios, producing a dataset 
suitable for rigorous numerical stress-testing. 

To ensure empirical validity, the simulation setup is calibrated using real investment project cash flow 
data obtained from the Bloomberg Corporate Bonds (Baa-rated) and FRED Economic Data for the 2020–2025 
period. The empirical dataset shows a smooth positive trend with moderate volatility, no sign changes 
(indicating conventional cash flows), and strong inter-temporal dependence, evidenced by a high 
autocorrelation coefficient. All experiments were run on a Python 3.11 computing system with the NumPy, 
SciPy, and Matplotlib libraries. Statistical cleaning and preprocessing yield the key parameters μ =  4532.91 
and σ =  982.18, which are subsequently transformed into lognormal parameters μ௟௢௚ = 8.396 and σ௟௢௚ =
0.214. These calibrated values are then embedded into the Monte Carlo simulation to produce synthetic cash 
flows that closely mimic real financial patterns. 

The combined use of a numerical–analytical framework using PONM and realistic cash flow scenarios 
using calibrated stochastic models enables this research to systematically evaluate the robustness, efficiency, 
and stability of IRR calculations against volatility, random disturbances, and structural uncertainty. This 
integrated design provides a rigorous foundation for the subsequent computational experiments and robustness 
assessments. 
 
2.2. Convergence of the PONM method 

The PONM algorithm implementation was adapted from the formulation of [15]. The PONM method 
was implemented to solve nonlinear equations, such as that in (1), 

(ݎ)݂ = 0, 

which in an economic context usually represents the NPV (Net Present Value) function against the interest 
rate ݎ. The goal is to find simple roots ݎ∗ that satisfy ݂(ݎ∗) = 0. 
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PONM is a two-step iterative method obtained from the afine combination of two third-order 
convergence methods, namely the Zhou Method, a modified version of Chebyshev–Halley and the Potra–Pták 
method (1984). Through a linear combination with parameters, the general form is obtained: 

 

௡ାଵݔ = ௡ݔ − ߟ
(௡ݔ)݂ + (௡ݕ)݂

݂ᇱ(ݔ௡) − (1 − (ߟ
ଶ(௡ݔ)݂ − (௡ݕ)݂(௡ݔ)2݂

݂ᇱ(ݔ௡)[݂(ݔ௡) −  , [(௡ݕ)3݂

with 

௡ݕ = ௡ݔ −
(௡ݔ)݂
݂ᇱ(ݔ௡) , ߟ  ∈ ܴ. 

The parameter  ߟ = ଵ
ଷ
 selection results in a fourth-order optimal method according to the Kung–Traub 

Conjecture (1974), where ߢ =  3 for the function evaluation per iteration; the theoretical maximum order 
is 2఑ିଵ = 4. With ߟ = ଵ

ଷ
 , the explicit form of the PONM algorithm is  

௡ݕ = ௡ݔ −
(௡ݔ)݂
݂ᇱ(ݔ௡) (2) 

௡ାଵݔ = ௡ݔ −
1
3

ቈ
(௡ݔ)݂ + (௡ݕ)݂

݂ᇱ(ݔ௡) −
ଶ(௡ݔ)݂ − (௡ݕ)݂(௡ݔ)2݂

݂ᇱ(ݔ௡)൫݂(ݔ௡) − ൯(௡ݕ)3݂
቉. 

 
(3) 

This method requires only two function evaluations and one first derivative evaluation per iteration, 
making it computationally efficient. Suppose the actual roots ݎ∗ satisfy ݂(ݎ∗) = 0. 
Defined: 

݁௡ = ௡ݔ − and ݀௡ ∗ݎ = ௡ݕ −  .∗ݎ
By expanding ݂(ݔ௡) and ݂ᇱ(ݔ௡) around ݎ∗ using Taylor series, we have: 

(௡ݔ)݂ = ݂ᇱ(ݎ∗)൫݁௡ + ܿଶ݁௡
ଶ + ܿଷ݁௡

ଷ + ܿସ݁௡
ସ + ܱ(݁௡

ହ)൯ (4) 

݂ᇱ(ݔ௡) = ݂ᇱ(ݎ∗)൫1 + 2ܿଶ݁௡ + 3ܿଷ݁௡
ଶ + 4ܿସ݁௡

ଷ + ܱ(݁௡
ସ)൯ (5) 

with 

௝ܿ =
݂(௝)(ݎ∗)
݆! ݂ᇱ(ݎ∗) ,  ݆ = 2,3,4 (6) 

By dividing Equations (4) by (5), the following result is obtained: 
 

(௡ݔ)݂
݂ᇱ(ݔ௡) = ݁௡ − ܿଶ݁௡

ଶ + 2(ܿଷ − ܿଶ
ଶ)݁௡

ଷ + (7ܿଶܿଷ − 4ܿଷ
ଶ − 3ܿସ)݁௡

ସ + ܱ(݁௡
ହ). (7) 

Thus, 

݀௡ = ݁௡ −
(௡ݔ)݂
݂ᇱ(ݔ௡) = ܿଶ݁௡

ଶ + 2(ܿଷ − ܿଶ
ଶ)݁௡

ଷ + (4ܿଶ
ଷ + 3ܿସ − 7ܿଶܿଷ)݁௡

ସ + ܱ(݁௡
ହ). (8) 

 
By expanding ݂(ݕ௡) around ݎ∗ using Taylor expansion, we have: 
 

(௡ݕ)݂ = ݂ᇱ(ݎ∗)൫݀௡ + ܿଶ݀௡
ଶ + ܿଷ݀௡

ଷ + ܿସ݀௡
ସ + ܱ(݀௡

ହ)൯. (9) 
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Substitution ݀௡ to (9) yields: 
 

(௡ݕ)݂ = ݂ᇱ(ݎ∗)൫ܿଶ݁௡
ଶ + 2(ܿଷ − ܿଶ

ଶ)݁௡
ଷ + (5ܿଶ

ଷ + 3ܿସ − 7ܿଶܿଷ)݁௡
ସ + ܱ(݁௡

ହ)൯. (10) 

Substituting all expansions (4), (5), and (9) into the PONM formula (10) gives the error equation: 

݁௡ାଵ = −ܿଶ(ܿଶ
ଶ + ܿଷ)݁௡

ସ + ܱ(݁௡
ହ) (11) 

From the error in Equation (11): 
|݁௡ାଵ| = ௡|ସ݁|ܭ + ܱ(|݁௡|ହ), (12) 

with ܭ = |ܿଶ(ܿଶ
ଶ + ܿଷ)| is an asymptotic constant. Therefore, it can be concluded that PONM has fourth-order 

convergence. This method also meets the optimal limit of Kung–Traub (1974) because it uses 3 evaluations 
per iteration and reaches order 4, namely: 
 

max݌ = 2఑ିଵ = 2ଷିଵ = 4. 
The PONM iteration is stopped if: 

|(௡ݔ)݂| < 10ିଵ଴. 
 

For financial applications (e.g. finding the IRR), it is usually sufficient to use a tolerance value of 10ି଼ or 
10ିଵ଴. PONM is faster than the Newton–Raphson method (2nd order) and the Chebyshev–Halley method 
(3rd order). The error decreases proportionally to ݁௡ାଵ ≈ ௡݁ܥ

ସ, indicating a significant acceleration in 
convergence because it only requires the first derivative ݂ᇱ(ݔ௡) , this method remains efficient and practical 
for application to complex NPV functions. 
 
2.3. Robustness and Sensitivity Analysis 

To assess the robustness of the method to cash flow fluctuations, three main experiments were 
conducted: 
1. Volatility Regime Test — tests the stability of IRR convergence at three levels of volatility: low σ =  0.1, 

medium σ =  0.3, and high σ =  0.5. 
2. Outlier Stress Test — introduces extreme shocks to 5–10% of observations ܨܥ௧ to test the breakdown point 

of the IRR estimator. 
3. Convergence Efficiency Test — compares the number of iterations, computation time, and success rate of 

PONM with the Newton–Raphson and Secant methods. 
In addition, a sensitivity analysis of local derivatives was performed using the Implicit Function Theorem 

(IFT): 
డ௥

డ஼ி೟
= − ଵ

௙ᇲ(௥)
ଵ

(ଵା௥)೟, 

 
to measure the marginal effect of changes in cash flows on shifts in IRR δݎ under stochastic disturbances. 
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2.4. Performance Evaluation 
This subsection evaluates the performance of the proposed PONM method based on accuracy, 

robustness, and computational efficiency. Accuracy is assessed through the deviation of the computed IRR 
from a high-precision numerical reference, robustness is measured by the stability of IRR estimates under data 
variation and outliers, and efficiency is evaluated using iteration counts and computation time to convergence. 
These criteria jointly provide a concise yet comprehensive assessment of the method’s numerical reliability. 
Performance evaluation is done based on three main metrics: 

(I) Accuracy — deviation of the PONM IRR result compared to the exact root (or numerical result 
with tolerance 10ିଵଶ; 

(II) Robustness — the level of stability of the IRR results against variations and the presence of 
outliers, measured by the coefficient of variation and influence function ܨܥ௧ 

(III) Efficiency — the number of iterations and the average computation time to reach convergence. 
 
3. DATA AND EXPERIMENTS 

This section presents the data sources and experimental design employed in this study, along with the 
procedures used to ensure data consistency and suitability for stochastic modeling. The empirical analysis is 
structured to bridge real-world financial observations with the theoretical framework developed in subsequent 
sections, ensuring that the calibrated parameters reflect actual market behavior. By combining high-frequency 
financial time series with rigorous preprocessing and validation steps, this experimental setup provides a 
reliable foundation for both descriptive analysis and simulation-based inference, thereby enhancing the 
robustness and interpretability of the proposed model. 

 
3.1. Empirical Data and Parameter Calibration 

Empirical datasets were downloaded from the Federal Reserve Economic Data (FRED) and the Bloomberg 
Corporate Bond Index (Baa-rated) for the period October 2020–October 2025. The first stage of this research 
aims to conduct descriptive analysis and statistical parameter calibration based on empirical data obtained 
from a daily time series of closing price indexes totaling 1,474 observations. This dataset represents the 
dynamics of cash flows or market prices, which are used as the basis for building a stochastic model in the 
subsequent simulation stage. 

The empirical data was cleaned of non-numerical and missing values, then converted into a time series 
with period numbering (ݐ =  0, 1, 2, … , 1473). All values were positive, so the cash flow pattern was 
categorized as conventional cash flow — meaning there was only one cash outflow followed by a series of 
cash inflows (indicated by the resulting sign changes). This implies the existence of a single IRR root in the 
numerical analysis stage. 
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Statistically, the results of empirical data processing provide the following summary: 
 

Table 1. The results of empirical data processing 

Parameter Mark Interpretation 
Number of observations 
(݊) 

1,474 The number of daily data points used. 

Average (ߤ) 4,532.91 Average value of cash flow/price per 
period. 

Standard deviation (ߪᇱ) 982.18 The volatility measure is around the 
average.21,7% 

Autocorrelation lag-1 (ߩଵ) 0.9986 The relationship between periods is 
very strong (time-dependent). 

Skewness 0.405 The distribution is slightly skewed to 
the right (positive). 

Curtosis −0.491 The distribution is flatter than normal 
(platykurtic). 

Sign changes 0 All values are positive (conventional 
cash flows). 

 

These results indicate that the empirical data exhibits a very smooth positive trend with moderate volatility 
and very high temporal dependence. The autocorrelation value is close to 1, indicating that interperiod 
fluctuations are very small, as is typical for smooth, continuous financial series. 

Mathematically, empirical parameters are used to estimate the equivalent lognormal distribution 
parameters that will be used in the next stage of the stochastic simulation. Based on the estimation results, the 
following is obtained: 

௟௢௚ߤ = 8.396 and ߪ௟௢௚ = 0.214 
which is calculated using the transformation: 

௟௢௚ߪ
ଶ = ln ቆ1 +

ଶߪ

 ,ଶቇߤ

௟௢௚ݑ = ln(ߤ) −
1
2

௟௢௚ߪ
ଶ . 

These parameters ൫ߤ௟௢௚,  ௟௢௚൯ represent the mean and dispersion on a logarithmic scale, probabilisticallyߪ
defining the empirical lognormal distribution of the data. This distribution is considered the most appropriate 
because all cash flow values are positive and tend to fluctuate around the mean with relatively small deviations. 

From these results, it can be concluded that the empirical data indicates high financial stability and a 
lognormal distribution structure with moderate volatility. Therefore, the empirical parameters, ߤ = 4532.91,
ߪ = 982.18, ௟௢௚ߤ = 8.396, and  ߪ௟௢௚ = 0.214 will be used as the basic parameters in generating synthetic 
data in next stage on Section 3.2 of the experiment, namely Monte Carlo simulation with three levels of 
volatility (low, medium, and high). 
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3.2. Stochastic Simulation of Cash Flows 

The second stage of this research aims to generate synthetic cash flow data that resembles the empirical 
characteristics of the results from Section 3.1. This process is carried out through Monte Carlo-based 
stochastic simulations using three probability distribution models, namely Lognormal, Student-t, and 
GARCH(1,1). 

These models were chosen to represent three types of dynamics commonly encountered in financial data: 
 

(I) The Lognormal model is used for positive cash flows with asymmetric distribution to the right, according 
to the empirical results from Section 3.1 which show all values (ܨܥ௧ > 0). 

(II) The Student-t model is used to describe the heavy-tail phenomenon (thick distribution tails) which often 
appears at high volatility. 

(III) The GARCH(1,1) model is used to represent volatility clustering, namely fluctuations that are not 
independent between periods. 

The empirical parameters obtained in Section 3.1 are used as the basis for calibration: 

ߤ = 4532.91, 

ߪ = 982.18, 

௟௢௚ߤ = 8.396, ௟௢௚ߪ = 0.214. 

Simulations were performed with 10,000 Monte Carlo scenarios for 12 time periods. 
For each model, three levels of volatility are generated: 

lowߪ =  ,ߪ0.5

mediumߪ =  ,ߪ

highߪ =  .ߪ1.5

Each model–volatility combination generates a synthetic cash flow matrix of size 10.000 × 12, which is 
then saved in `.csv` format. The statistical generation and measurement processes are performed using Python 
in Google Colab with the `numpy`, `scipy`, and `arch` libraries. 

A summary of the experimental results is presented in Table 2 below: 
 

Table 2. Results of Experiment. 

Model Volatility 
Level Mean Std Dev Skewness Kurtosis Interpretation 

Lognormal   Low               4454.92 478.84 0.33    0.19    Positive distribution with 
damped volatility.         

Lognormal   Currently              4537.59 981.47 0.65    0.72    
Mimicking empirical 
conditions with moderate 
right asymmetry. 

Lognormal   Tall               4670.70 1454.26 1.03    2.02    Large fluctuations with a 
long right tail. 

Student-t   Low               4533.11 492.55 –0.03   5.01    Moderate heavy-tailed 
distribution.           
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Student-t   Currently              4535.21 988.78 –0.10   6.53    Heavy-tail is strong at 
high volatility.             

GARCH(1,1) Currently              4533.44 436.07 0.01    0.20    Stable with volatility 
cluster pattern.                

 

The lognormal distribution exhibits a characteristic positively skewed shape, as in Figure 1, while the 
Student-t model exhibits thicker tails (leptokurtic). The GARCH model produces a series with heteroskedastic 
variance but a stable mean around ߤ ≈ 4530. 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. Distribution of lognormal simulation results (moderate volatility). 

 

Mathematically, the simulation results show that: 

 The mean value of all models is around the empirical value, indicating that the simulation process is well 
calibrated. 

 The standard deviation increases proportionally with the volatility scale 0.5ߪ, ,ߪ  factor according ߪ1.5
to the stochastic variance theory. 

 Positive skewness in the lognormal model proves the distribution tendency to the right, as in the empirical 
data of Section 3.1. 

 Kurtosis increases in the Student-t model, confirming the heavy tail characteristics for extreme market 
conditions. 

 The GARCH model maintains a mean value close to the dynamic variance fluctuations between periods, 
depicting a realistic volatility clustering phenomenon.ߤ 
From these results, it can be concluded that all stochastic models are able to produce synthetic cash flows 

that match the empirical characteristics of data from Section 3.1. The Lognormal model is considered the most 
representative for simulating positive conventional cash flows, while Student-t and GARCH provide insight 
into the model's sensitivity to tail thickness and volatility dynamics. 
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The synthetic parameters and datasets from Section 3.2 were then used in Section 3.3, namely numerical 
experiments for calculating the Internal Rate of Return (IRR) using three iterative methods: Newton–Raphson, 
Secant, and PONM (Polynomial One-Newton Method). 

The Internal Rate of Return (IRR) calculation experiment was conducted on 500 synthetic cash flow 
scenarios resulting from the medium volatility lognormal model obtained from Section 3.2. Three iterative 
methods, namely Newton–Raphson, Secant, and Proposed Optimal Numerical Method (PONM) were applied 
to obtain the roots of the Net Present Value function as follows: 

(ݎ)݂ = ෍
௧ܨܥ

(1 + ௧(ݎ

௡

௧ୀ଴

= 0 

With an iterative approach, each method tries to find ݎ∗ such that ݂(ݎ∗) ≈ 0. Evaluation is carried out based 
on the average IRR produced, the standard deviation of the results, the average number of iterations, the 
convergence success ratio, and the computation time. 
 

Table 3. Numerical Experiment Results of IRR Calculation. 

Method          Average 
IRR 

Standard 
Deviation 

Average 
Iteration 

Success 
Ratio Time (s) 

Newton–
Raphson   0.0837 0.0109 7.42 0.942 2.71 

Secant          0.0836 0.0112 9.06 0.981 3.15 
PONM 
(Proposed) 0.0837 0.0095 5.98 0.995 2.04 

                    Source: Results of data processing using Python (2025) 
 
 

3.3. Analysis of Results 

This subsection analyzes and compares the numerical performance of the proposed PONM method 
against classical root-finding algorithms, namely Newton–Raphson and Secant, in the context of IRR 
computation. The evaluation focuses on four key aspects: computational efficiency, solution stability under 
data variability, consistency of the estimated IRR values, and convergence success rates. By examining 
iteration counts, execution time, convergence order, and statistical dispersion of the resulting IRR estimates, 
this analysis provides a rigorous quantitative assessment of each method’s robustness and efficiency. The 
results are interpreted both numerically and theoretically, linking empirical outcomes to the underlying 
convergence properties of the algorithms. 

(I)  Computational Efficiency 
The PONM method showed the fastest solution time (2.04 seconds) with the fewest average iterations 

(5.98 iterations). Mathematically, this reflects the acceleration of convergence due to the addition of the 
second-order correction component: 

Correction = 1 − ௙(௥ೖ)௙ᇲᇲ(௥ೖ)
ଶ[௙ᇲ(௥ೖ)]మ , 

which suppresses iterative value oscillations when approaching the true root. 
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(II)  Solution Stability and Variation of IRR Values 
PONM produces the smallest standard deviation of 0.0095, indicating higher stability over variations 

in cash flow data. Newton–Raphson is faster than Secant but is more prone to failure to converge when 
݂ᇱ(ݎ௞) approaching zero. Secant tends to be more stable than Newton but requires more iterations because 
it does not utilize derivative information. 

(III) Consistency of IRR Value 
All three methods yield an average IRR of approximately 8.36%–8.37%, consistent with the 

theoretical expectation of lognormal synthetic cash flows. This similarity confirms that all methods are 
mathematically valid, but their efficiency differs significantly. 

(IV) Convergence Success 
PONM showed the highest success rate 99.5%, meaning that almost all simulations successfully 

found the roots of the function within a tolerance limit of 10⁻⁶. Newton–Raphson failed to converge in a 
small proportion of scenarios with near-zero derivatives (flat derivatives), while Secant only failed in 
cases with extreme oscillations. 

Numerically, the increased efficiency of PONM can be explained by the fact that it is a third-order 
method, while Newton and Secant are second-order and approximately 1.618 (superlinear convergence), 
respectively. Thus, the number of iterations required to achieve a given accuracy ߝ is smaller, in 
accordance with the property: 

݁௞ାଵ ≈ ௞݁ܥ
௣, 

with ݌ = 3 for PONM, ݌ = 2 for Newton, and ݌ ≈  1,6 for Secant. Larger values accelerate the error 
reduction exponentially at each iteration. Based on the results of empirical testing and numerical 
performance comparison: 

(I) PONM provides the best performance in terms of efficiency, stability, and convergence, with the 
fastest average execution time and the smallest result deviation. 

(II) Newton–Raphson remains superior in cases of smooth data with clear derivatives but is less robust 
against noise or multiple roots. 

 (III)Secant is suitable for cases without explicit derivatives but is less efficient than the other two 
methods. 

Thus, it can be concluded that PONM is the optimal algorithm for stochastic cash flow-based IRR 
calculations, and these results form the basis for Section 3.4 (robustness test and sensitivity analysis) to 
assess its robustness to data variations and numerical disturbances. This stage aims to assess the 
robustness and sensitivity of the IRR calculation method to random noise and systematic shocks in 
synthetic cash flow data. 

Tests were conducted on three numerical methods—Newton–Raphson, Secant, and PONM—using 
the moderate volatility lognormal cash flow dataset from Section 3.2. 
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Two types of disturbances apply to cash flows with the following types:   

(I)  Random noise ±5% is the size of the standard deviation of empirical data: 

௧ܨܥ
ᇱ = ௧(1ܨܥ + ߳௧), ߳௧ ∼ ࣨ(0, 0.05ଶ) 

(II) Systematic shock ±10% of the amount in the final cash flow: 

௡ܨܥ
ᇱ = ௡(1ܨܥ ± 0.10) 

The IRR values are then recalculated for each disruption scenario. From these results, three resilience 
metrics are calculated: 

(I) Coefficient of Variation (CV): variation relative to the average IRR result, 

ܸܥ =
ூோோߪ

ூோோߤ
 

(II) Stability Ratio (SR): convergence success ratio, 

ܴܵ = cܰonvergence

tܰotal
 

(III) IFT Sensitivity Index (IFT): a measure of iterative sensitivity to error propagation. 
The results show that the PONM method has the lowest level of sensitivity (smallest CV and IFT values) 

and the highest stability (SR approaching 1) as shown in Table 4 below: 
 

Table 4. Results and Interpretation 

Method          CV 
(Noise) 

SR 
(Stability) 

IFT (Shock 
Sensitivity) 

Interpretation                                 

Newton–
Raphson   

0.0214 0.951 0.0187 Fast but sensitive to noise 
and shock.   

Secant          0.0176 0.973 0.0155 Stable, but longer iterations.             
PONM 
(Proposed) 

0.0129 0.993 0.0098 Most robust and resistant to 
data fluctuations. 

 
The results show that the PONM method has the lowest sensitivity (smallest CV and IFT values) and the 

highest stability (SR approaching 1). This demonstrates PONM's ability to maintain the stability of the IRR 
solution despite random disturbances (noise) and systematic shocks to cash flows. Mathematically, this 
stability is achieved by a second-order correction in the PONM iterative function, which reduces the effect of 
error propagation between iterations and keeps the gradient ݂ᇱ(ݎ) value within the safe convergence limit. 
Robustness and sensitivity tests indicate that: 

(I) PONM is the most resistant to data interference, with the lowest coefficient of variation and sensitivity. 
(II) Secant is quite stable but requires longer iterations. 
(III) Newton–Raphson is less stable in fluctuating cash flows or small derivatives. 
Thus, PONM is the most optimal method not only in terms of efficiency but also in terms of numerical 

robustness to stochastic and systematic disturbances. 
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4. CONCLUSION 
 

Based on the empirical analysis, stochastic simulations, and numerical experiments conducted, it can be 
concluded that the cash-flow pattern exhibits positive stability with strong autocorrelation, ensuring the 
existence of a single real root of the NPV function in determining the IRR; the Lognormal, Student-t, and 
GARCH(1,1) simulation models are well calibrated and capable of replicating empirical characteristics across 
various volatility regimes; the PONM method demonstrates the highest computational efficiency, requiring 
fewer iterations and shorter computation time compared to the Newton–Raphson and Secant methods; 
furthermore, PONM shows the strongest numerical robustness, reflected in lower variation, reduced IFT 
sensitivity, and a lower failure rate, thereby maintaining stable IRR estimates even under random disturbances 
and systematic shocks in cash flows; therefore, PONM proves to be the most efficient, stable, and reliable 
numerical approach in fluctuating cash-flow environments, establishing it as the optimal method for IRR 
computation. 
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