

World Scientific News

An International Scientific Journal

WSN 210 (2025) 1-10

EISSN 2392-2192

Picture Fuzzy Subgroupoids and Ideals

Sanjeet Kumar^{1,a}, Manoranjan Kumar Singh^{2,b}, J. N. Singh^{3,c*}

^{1,2} Department of Mathematics, Magadh University, Bodh Gaya, Bihar, India

³Department of Mathematics and Computer Science, Barry University, 11300 NE Second Avenue, Miami Shores, FL 33161, USA

E-mail: ^adrsancheetkumar1994@gmail.com, ^bdrmk Singh_gaya@yahoo.com, ^cjsingh@barry.edu

ABSTRACT

The object of this paper is to propound the notion of picture fuzzy subgroupoids and picture fuzzy ideals along with its example. Following the conception of picture fuzzy subgroupoids and picture fuzzy ideals as introduced, we have derived several appealing and interesting results from them.

Keywords: Picture fuzzy sets, Picture fuzzy subgroups, Picture fuzzy subgroupoids, Picture fuzzy ideals.

Mathematics Subject Classification: 08A72

(Received 10 October 2025; Accepted 18 November 2025; Date of Publication 7 December 2025)

1. INTRODUCTION

Nearly sixty years have elapsed since a researcher initiated a new notion in the realm of the mathematical world called fuzzy set (FS). After a gap of 21 years, researchers observed that when there is a membership value, then a non-membership should also exist, which leads to the surfacing of an intuitionistic fuzzy set (IFS). IFS deals with two kinds of membership functions referred to as membership and non-membership, whose sum always lies in $[0,1]$. IFS is treated as more general than the FS. Researchers were engrossed in further development of the theory by thinking that when there are membership and non-membership, then a neutral value should also be there, and this leads to the development of a picture fuzzy set (PFS). It was propounded by Cuong and Kreinovich [8]. It revolutionized the extensions of work done in fuzzy algebraic structures and intuitionistic fuzzy algebraic structures. The fuzzification of picture fuzzy algebraic structures was introduced by Dogra and Pal [10,11,12,13], and then the notion of picture fuzzy subring (PFSR), picture fuzzy subgroup (PFSG), picture fuzzy subspace, and picture fuzzy sub-hyperspace came into existence along with some interesting results.

In this paper, we wish to propound the conception of picture fuzzy subgroupoids and picture fuzzy ideals. Additionally, on these newly introduced notions, we have derived some interesting and appealing results over all of them.

* Corresponding author

2. PRELIMINARIES

Definition 2.1. ([24]) For any universe X , a FS P over X is defined as $P = \{(b, \tau_P(b)): b \in X\}$, where $\tau_P: X \rightarrow [0,1]$. The value $\tau_P(b)$ represent the membership degree of the element $b \in X$.

Definition 2.2. ([1]) For any universe X , a IFS P over X is defined as $P = \{(b, \tau_P(b), \vartheta_P(b)): b \in X\}$, where $\tau_P(b) \in [0,1]$ represent the membership degree of the element $b \in X$, $\vartheta_P(b) \in [0,1]$ represent the non-membership degree of the element $b \in X$ with the condition $0 \leq \tau_P(b) + \vartheta_P(b) \leq 1$ for all $b \in X$.

Here, $H_p(b) = 1 - (\tau_P(b) + \vartheta_P(b))$ is called the degree of hesitancy of $b \in X$, which excludes the membership degree and non-membership degree.

Definition 2.3. ([8]) For any set of universe X , a PFS P over X is defined as $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in X\}$, where $\tau_P(b) \in [0,1]$ represents the degree of positive membership of the element $b \in X$, $\vartheta_P(b) \in [0,1]$ represents the degree of neutral membership of the element $b \in X$ and $\eta_P(b)$ represent the degree of negative membership of the element $b \in X$ with the condition $0 \leq \tau_P(b) + \vartheta_P(b) + \eta_P(b) \leq 1$ for all $b \in X$.

Here, $H_p(b) = 1 - (\tau_P(b) + \vartheta_P(b) + \eta_P(b))$ is called the degree of refusal membership of $b \in X$.

Definition 2.4. ([8]) Let P_1 and P_2 be two PFSs of X . Then the union of P_1 and P_2 is defined as $P_1 \cup P_2 = \{(b, \tau_{P_1 \cup P_2}(b), \vartheta_{P_1 \cup P_2}(b), \eta_{P_1 \cup P_2}(b): b \in X\}$, where $\tau_{P_1 \cup P_2}(b) = \max\{\tau_{P_1}(b), \tau_{P_2}(b)\}$, $\vartheta_{P_1 \cup P_2}(b) = \min\{\vartheta_{P_1}(b), \vartheta_{P_2}(b)\}$ and $\eta_{P_1 \cup P_2}(b) = \min\{\eta_{P_1}(b), \eta_{P_2}(b)\}$.

Definition 2.5. ([8]) Let P_1 and P_2 be two PFSs of X . Then the intersection of P_1 and P_2 is defined as $P_1 \cap P_2 = \{(b, \tau_{P_1 \cap P_2}(b), \vartheta_{P_1 \cap P_2}(b), \eta_{P_1 \cap P_2}(b): b \in X\}$, where $\tau_{P_1 \cap P_2}(b) = \min\{\tau_{P_1}(b), \tau_{P_2}(b)\}$, $\vartheta_{P_1 \cap P_2}(b) = \min\{\vartheta_{P_1}(b), \vartheta_{P_2}(b)\}$ and $\eta_{P_1 \cap P_2}(b) = \max\{\eta_{P_1}(b), \eta_{P_2}(b)\}$.

Definition 2.6. ([22]) A FS P of the group G be referred to as a fuzzy subgroupoid if $\tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}$, $\forall b, n \in G$.

Definition 2.7. ([22]) The FS P of a group G be referred to as a fuzzy subgroup (FSG) if

$$(I) \tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}, \forall b, n \in G$$

$$(II) \tau_P(b^{-1}) \geq \tau_P(b), \forall b \in G$$

Definition 2.8. ([4]) Let $P = \{(b, \tau_P(b), \vartheta_P(b)): b \in G\}$ be an IFS of the group G , where τ_p and ϑ_p are membership and non-membership functions respectively. Then, we call P an intuitionistic fuzzy subgroup (IFSG) of G if

$$(I) \tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}, \forall b, n \in G$$

$$(II) \tau_P(b^{-1}) \geq \tau_P(b), \forall b \in G$$

$$(III) \vartheta_P(bn) \leq \max\{\vartheta_P(b), \vartheta_P(n)\}, \forall b, n \in G$$

$$(IV) \vartheta_P(b^{-1}) \leq \vartheta_P(b), \forall b \in G$$

Definition 2.9. ([16]) Let $P = \{(b, \tau_P(b), \vartheta_P(b)): b \in G\}$ be an IFS of the groupoid G , where τ_p and ϑ_p are membership and non-membership functions respectively. Then, we call P an intuitionistic fuzzy subgroupoid of G if

$$(I) \tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}, \forall b, n \in G$$

$$(II) \vartheta_P(bn) \leq \max\{\vartheta_P(b), \vartheta_P(n)\}, \forall b, n \in G$$

Definition 2.10. ([11]) Let C be a group and $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in C\}$ be a PFS in C . Then, the PFS P be referred to as the PFSG of C if the following axioms are satisfied:

$$(I) \tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}, \vartheta_P(bn) \geq \min\{\vartheta_P(b), \vartheta_P(n)\}, \eta_P(bn) \leq \max\{\eta_P(b), \eta_P(n)\}, \forall b, n \in C$$

$$(II) \tau_Q(b^{-1}) \geq \tau_Q(b), \vartheta_Q(b^{-1}) \geq \vartheta_Q(b), \eta_Q(b^{-1}) \leq \eta_Q(b), \forall b \in C$$

Definition 2.11. ([10]) Let $f: C_1 \rightarrow C_2$ be a mapping and $Q = (\tau_Q, \vartheta_Q, \eta_Q)$ be a PFS in C_2 . Then the inverse image of Q under the map f is the PFS $f^{-1}(Q) = (\tau_{f^{-1}(Q)}, \vartheta_{f^{-1}(Q)}, \eta_{f^{-1}(Q)})$, where $\tau_{f^{-1}(Q)}(b) = \tau_Q(f(b))$, $\vartheta_{f^{-1}(Q)}(b) = \vartheta_Q(f(b))$ and $\eta_{f^{-1}(Q)}(b) = \eta_Q(f(b))$ for all $b \in C_1$.

Definition 2.12. ([10]) Let $f: C_1 \rightarrow C_2$ be an onto homomorphism and $Q = (\tau_Q, \vartheta_Q, \eta_Q)$ be a PFS in C_1 . Then, the image of Q under the map f is the PFS $f(Q) = (\tau_{f(Q)}, \vartheta_{f(Q)}, \eta_{f(Q)})$, where $\tau_{f(Q)}(b) = \sup_{a \in f^{-1}(b)} \tau_Q(a)$, $\vartheta_{f(Q)}(b) = \inf_{a \in f^{-1}(b)} \vartheta_Q(a)$ and $\eta_{f(Q)}(b) = \inf_{a \in f^{-1}(b)} \eta_Q(a) \forall b \in C_2$.

In the coming section, we will introduce the concept of picture fuzzy subgroupoids and picture fuzzy ideals in the domain of PFS.

3. PICTURE FUZZY SUBGROUPOIDS AND IDEAL

Definition 3.1. Let C be a groupoid and $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in C\}$ be a PFS in C . Then, the PFS P be referred to as the picture fuzzy subgroupoids of C if the following axioms are satisfied:

- (I) $\tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}, \forall b, n \in C$
- (II) $\vartheta_P(bn) \geq \min\{\vartheta_P(b), \vartheta_P(n)\}, \forall b, n \in C$
- (III) $\eta_P(bn) \leq \max\{\eta_P(b), \eta_P(n)\}, \forall b, n \in C$

Example 3.1. Let $C = (\mathbb{R}, \cdot)$ be a groupoid and $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in C\}$ be a PFS in C characterised by

$$\begin{aligned} \tau_P(x) &= \begin{cases} 0.8, & x = 0 \\ 0.7, & \text{otherwise} \end{cases} \\ \vartheta_P(x) &= \begin{cases} 0.9, & x = 0 \\ 0.8, & \text{otherwise} \end{cases} \\ \eta_P(x) &= \begin{cases} 0.2, & x = 0 \\ 0.3, & \text{otherwise} \end{cases} \end{aligned}$$

Here, $\tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}$, $\vartheta_P(bn) \geq \min\{\vartheta_P(b), \vartheta_P(n)\}$ and $\eta_P(bn) \leq \max\{\eta_P(b), \eta_P(n)\}, \forall b, n \in C$. Thus, P is the picture fuzzy subgroupoids of C .

Definition 3.2. Let C be a groupoid and $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in C\}$ be a PFS in C . Then, the PFS P be referred to as

- (I) picture fuzzy left ideal (PFLI) of C if $\tau_P(bn) \geq \tau_P(n)$, $\vartheta_P(bn) \geq \vartheta_P(n)$ and $\eta_P(bn) \leq \eta_P(n), \forall b, n \in C$.
- (II) picture fuzzy right ideal (PFRI) of C if $\tau_P(bn) \geq \tau_P(b)$, $\vartheta_P(bn) \geq \vartheta_P(b)$ and $\eta_P(bn) \leq \eta_P(b), \forall b, n \in C$.
- (III) picture fuzzy ideal (PFI) of C if it is both PFLI and PFRI.

It is clear that P is an PFI of C iff $\tau_P(bn) \geq \max\{\tau_P(b), \tau_P(n)\}$, $\vartheta_P(bn) \geq \max\{\vartheta_P(b), \vartheta_P(n)\}$

and $\eta_P(bn) \leq \min\{\eta_P(b), \eta_P(n)\}$, $\forall b, n \in C$. Moreover, PFI (left or right) is picture fuzzy subgroupoids of C . Note that for any picture fuzzy subgroupoid P of C we have $\tau_P(b^n) \geq \tau_P(n)$, $\vartheta_P(b^n) \geq \vartheta_P(n)$ and $\eta_P(b^n) \leq \eta_P(n)$ $\forall b \in C$, where b^n is any composite of b 's.

Remark 3.1.

(I) If a PFS $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in C\}$ is a picture fuzzy subgroupoid of C , then $\tau_P(b)$, $\vartheta_P(b)$ and $\eta_P^c(b)$ are fuzzy subgroupoids of C .

(II) If a PFS $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in C\}$ is a PFI (PFLI or PFRI) of C , then $\tau_P(b)$, $\vartheta_P(b)$ and $\eta_P^c(b)$ are fuzzy (left or right) ideal of C .

Theorem 3.1. Let C be a groupoid and $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in C\}$, $Q = \{(b, \tau_Q(b), \vartheta_Q(b), \eta_Q(b)): b \in C\}$ be two picture fuzzy subgroupoids of C . Then $P \cap Q$ is a picture fuzzy subgroupoid of C .

Proof: Let $P \cap Q = W = \{(b, \tau_W(b), \vartheta_W(b), \eta_W(b)): b \in C\}$, then $\tau_W(b) = \min\{\tau_P(b), \tau_Q(b)\}$, $\vartheta_W(b) = \min\{\vartheta_P(b), \vartheta_Q(b)\}$ and $\eta_W(b) = \max\{\eta_P(b), \eta_Q(b)\}$ $\forall b \in C$. Since P and Q are picture fuzzy subgroupoids of C , therefore

(I) $\tau_P(bn) \geq \min\{\tau_P(b), \tau_P(n)\}$ and $\tau_Q(bn) \geq \min\{\tau_Q(b), \tau_Q(n)\}$, $\forall b, n \in C$

(II) $\vartheta_P(bn) \geq \min\{\vartheta_P(b), \vartheta_P(n)\}$ and $\vartheta_Q(bn) \geq \min\{\vartheta_Q(b), \vartheta_Q(n)\}$, $\forall b, n \in C$

(III) $\eta_P(bn) \leq \max\{\eta_P(b), \eta_P(n)\}$ and $\eta_Q(bn) \leq \max\{\eta_Q(b), \eta_Q(n)\}$, $\forall b, n \in C$

Now $\forall b, n \in C$, we have

$$\begin{aligned} \tau_W(bn) &= \min\{\tau_P(bn), \tau_Q(bn)\} \\ &\geq \min\{\min\{\tau_P(b), \tau_P(n)\}, \min\{\tau_Q(b), \tau_Q(n)\}\} \\ &= \min\{\min\{\tau_P(b), \tau_Q(b)\}, \min\{\tau_P(n), \tau_Q(n)\}\} \\ &= \min\{\tau_W(b), \tau_W(n)\}, \end{aligned}$$

$$\begin{aligned} \vartheta_W(bn) &= \min\{\vartheta_P(bn), \vartheta_Q(bn)\} \\ &\geq \min\{\min\{\vartheta_P(b), \vartheta_P(n)\}, \min\{\vartheta_Q(b), \vartheta_Q(n)\}\} \\ &= \min\{\min\{\vartheta_P(b), \vartheta_Q(b)\}, \min\{\vartheta_P(n), \vartheta_Q(n)\}\} \\ &= \min\{\vartheta_W(b), \vartheta_W(n)\}, \end{aligned}$$

and

$$\begin{aligned}
 \eta_W(bn) &= \max\{\eta_P(bn), \eta_Q(bn)\} \\
 &\leq \max\{\max\{\eta_P(b), \eta_P(n)\}, \max\{\eta_Q(b), \eta_Q(n)\}\} \\
 &= \max\{\max\{\eta_P(b), \eta_Q(b)\}, \max\{\eta_P(n), \eta_Q(n)\}\} \\
 &= \max\{\eta_W(b), \eta_W(n)\}
 \end{aligned}$$

Hence, $W = P \cap Q$ is a picture fuzzy subgroupoid of \mathcal{C} .

Theorem 3.2. Let \mathcal{C} be a groupoid and $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in \mathcal{C}\}$, $Q = \{(b, \tau_Q(b), \vartheta_Q(b), \eta_Q(b)): b \in \mathcal{C}\}$ be two picture fuzzy (left or right) ideals of \mathcal{C} . Then $P \cap Q$ is a picture fuzzy (left or right) ideal of \mathcal{C} .

Proof: Let $P \cap Q = W = \{(b, \tau_W(b), \vartheta_W(b), \eta_W(b)): b \in \mathcal{C}\}$, then $\tau_W(b) = \min\{\tau_P(b), \tau_Q(b)\}$, $\vartheta_W(b) = \min\{\vartheta_P(b), \vartheta_Q(b)\}$ and $\eta_W(b) = \max\{\eta_P(b), \eta_Q(b)\} \forall b \in \mathcal{C}$. Let P and Q are PFLIs of \mathcal{C} , then $\forall b, n \in \mathcal{C}$

$$\begin{aligned}
 \tau_W(bn) &= \min\{\tau_P(bn), \tau_Q(bn)\} \\
 &\geq \min\{\tau_P(n), \tau_Q(n)\} \\
 &= \tau_W(n),
 \end{aligned}$$

$$\begin{aligned}
 \vartheta_W(bn) &= \min\{\vartheta_P(bn), \vartheta_Q(bn)\} \\
 &\geq \min\{\vartheta_P(n), \vartheta_Q(n)\} \\
 &= \vartheta_W(n)
 \end{aligned}$$

and

$$\begin{aligned}
 \eta_W(bn) &= \max\{\eta_P(bn), \eta_Q(bn)\} \\
 &\leq \max\{\eta_P(n), \eta_Q(n)\} \\
 &= \eta_W(n)
 \end{aligned}$$

Hence, $W = P \cap Q$ is a PFLI of \mathcal{C} . By following the same footsteps, we can show that the intersection of two PFRI is a PFRI.

Theorem 3.3. Let \mathcal{C} be a groupoid and $P = \{(b, \tau_P(b), \vartheta_P(b), \eta_P(b)): b \in \mathcal{C}\}$, $Q = \{(b, \tau_Q(b), \vartheta_Q(b), \eta_Q(b)): b \in \mathcal{C}\}$ be two picture fuzzy (left or right) ideals of \mathcal{C} . Then $P \cup Q$ is a picture fuzzy (left or right) ideal of \mathcal{C} .

Proof: Let $P \cup Q = W = \{(b, \tau_W(b), \vartheta_W(b), \eta_W(b) : b \in C\}$, then $\tau_W(b) = \max\{\tau_P(b), \tau_Q(b)\}$, $\vartheta_W(b) = \min\{\vartheta_P(b), \vartheta_Q(b)\}$ and $\eta_W(b) = \min\{\eta_P(b), \eta_Q(b)\} \forall b \in C$. Let P and Q are PFLI of C , then $\forall b, n \in C$

$$\tau_W(bn) = \max\{\tau_P(bn), \tau_Q(bn)\}$$

$$\geq \max\{\tau_P(n), \tau_Q(n)\}$$

$$= \tau_W(n),$$

$$\vartheta_W(bn) = \min\{\vartheta_P(bn), \vartheta_Q(bn)\}$$

$$\geq \min\{\vartheta_P(n), \vartheta_Q(n)\}$$

$$= \vartheta_W(n)$$

and

$$\eta_W(bn) = \min\{\eta_P(bn), \eta_Q(bn)\}$$

$$\leq \min\{\eta_P(n), \eta_Q(n)\}$$

$$= \eta_W(n)$$

Hence, $W = P \cup Q$ is a PFLI of C . By following the same footsteps, we can show that the union of two PFRI is a PFRI.

Theorem 3.3. Let C_1 and C_2 be two groupoids. Let $f: C_1 \rightarrow C_2$ be an onto homomorphism. Then we have that

(I) if $Q = (\tau_Q, \vartheta_Q, \eta_Q)$ is a picture fuzzy subgroupoid of C_2 , then $f^{-1}(Q)$ is a picture fuzzy subgroupoid of C_1

(II) if $P = (\tau_P, \vartheta_P, \eta_P)$ is a picture fuzzy subgroupoid of C_1 , then $f(P)$ is a picture fuzzy subgroupoid of C_2 .

Proof: (I) Let $f^{-1}(Q) = (\tau_{f^{-1}(Q)}, \vartheta_{f^{-1}(Q)}, \eta_{f^{-1}(Q)})$, where $\tau_{f^{-1}(Q)}(b) = \tau_Q(f(b))$, $\vartheta_{f^{-1}(Q)}(b) = \vartheta_Q(f(b))$ and $\eta_{f^{-1}(Q)}(b) = \eta_Q(f(b))$, $\forall b \in C_1$. Then $\forall b, n \in C_1$, we have

$$(I) \tau_{f^{-1}(Q)}(bn) = \tau_Q(f(bn))$$

$$= \tau_Q(f(b)f(n))$$

$$\geq \min\{\tau_Q(f(b)), \tau_Q(f(n))\}$$

$$= \min\{\tau_{f^{-1}(Q)}(b), \tau_{f^{-1}(Q)}(n)\}$$

i.e., $\tau_{f^{-1}(Q)}(bn) \geq \min\{\tau_{f^{-1}(Q)}(b), \tau_{f^{-1}(Q)}(n)\}$

Similarly, $\vartheta_{f^{-1}(Q)}(bn) \geq \min\{\vartheta_{f^{-1}(Q)}(b), \vartheta_{f^{-1}(Q)}(n)\}$ and $\eta_{f^{-1}(Q)}(bn) \leq \max\{\eta_{f^{-1}(Q)}(b), \eta_{f^{-1}(Q)}(n)\}$

Therefore, $f^{-1}(Q)$ is a picture fuzzy subgroupoid of \mathcal{C}_1 .

(II) Similar to proof of part (I).

Theorem 3.4. Let \mathcal{C}_1 and \mathcal{C}_2 be two groupoids. Let $f: \mathcal{C}_1 \rightarrow \mathcal{C}_2$ be an onto homomorphism. Then we have that

(I) if $Q = (\tau_Q, \vartheta_Q, \eta_Q)$ is a PFLI of \mathcal{C}_2 , then $f^{-1}(Q)$ is a PFLI of \mathcal{C}_1

(II) if $P = (\tau_P, \vartheta_P, \eta_P)$ is a PFLI of \mathcal{C}_1 , then $f(P)$ is an PFLI of \mathcal{C}_2 .

(III) if $Q = (\tau_Q, \vartheta_Q, \eta_Q)$ is a PFRI of \mathcal{C}_2 , then $f^{-1}(Q)$ is a PFRI of \mathcal{C}_1

(IV) if $P = (\tau_P, \vartheta_P, \eta_P)$ is a PFRI of \mathcal{C}_1 , then $f(P)$ is an PFRI of \mathcal{C}_2 .

Proof: Let $f^{-1}(Q) = (\tau_{f^{-1}(Q)}, \vartheta_{f^{-1}(Q)}, \eta_{f^{-1}(Q)})$, where $\tau_{f^{-1}(Q)}(b) = \tau_Q(f(b))$, $\vartheta_{f^{-1}(Q)}(b) = \vartheta_Q(f(b))$ and $\eta_{f^{-1}(Q)}(b) = \eta_Q(f(b))$, $\forall b \in \mathcal{C}_1$.

(I) Let $Q = (\tau_Q, \vartheta_Q, \eta_Q)$ is a PFLI of \mathcal{C}_2 , then $\forall b, n \in \mathcal{C}_1$

$$\begin{aligned} \tau_{f^{-1}(Q)}(bn) &= \tau_Q(f(bn)) \\ &= \tau_Q(f(b)f(n)) \\ &\geq \tau_Q(f(n)) \\ &= \tau_{f^{-1}(Q)}(n) \end{aligned}$$

i.e., $\tau_{f^{-1}(Q)}(bn) \geq \tau_{f^{-1}(Q)}(n)$

Similarly, $\vartheta_{f^{-1}(Q)}(bn) \geq \vartheta_{f^{-1}(Q)}(n)$ and $\eta_{f^{-1}(Q)}(bn) \leq \eta_{f^{-1}(Q)}(n)$

Therefore, $f^{-1}(Q)$ is a PFLI of \mathcal{C}_1 .

By following the same footsteps, we can show that the remaining parts of the results also hold good.

4. CONCLUSION

Following the notions introduced in this paper, we can extend the results in several directions under the umbrella picture fuzzy set and picture fuzzy groupoid to erect a bigger structure.

References

- [1] Atanassov, K. T., Intuitionistic fuzzy sets. *Fuzzy Sets and Systems* 20 (1986), 87–96. [https://doi.org/10.1016/S0165-0114\(86\)80034-3](https://doi.org/10.1016/S0165-0114(86)80034-3)
- [2] Banerjee, B. and Basnet, D. K., Intuitionistic fuzzy subrings and ideals. *J. Fuzzy Math.*, 11(1) (2003), 139–155.
- [3] Biswas, R., Fuzzy subgroups and anti-fuzzy subgroups. *Fuzzy Sets and Systems* 35(1990) 121–124.
- [4] Biswas, R., Intuitionistic fuzzy subgroups. *Mathematical Forum*, Vol. X, (1989), 37– 46.
- [5] Cuong, B. C. and Kreinovich, V., Picture fuzzy sets - A new concept for computational intelligence problems. *Proceedings of the Third World Congress on Information and Communication Technologies WICT*, 2013. <https://doi.org/10.1109/WICT.2013.7113099>
- [6] Cuong, B. C., Picture fuzzy sets. *Journal of Computer Science and Cybernetics* 30 (2014), 409–420. <https://doi.org/10.15625/1813-9663/30/4/5032>
- [7] Cuong, B. C., and Hai, P. V., Some fuzzy logic operators for picture fuzzy sets. *Seventh International Conference on Knowledge and Systems Engineering, IEEE*, Ho Chi Minh City, Vietnam, (2015). <https://doi.org/10.1109/KSE.2015.20>
- [8] Cuong, B. C. and Kreinovich, V., Picture fuzzy sets - a new concept for computational intelligence problems. in: *Proceedings of the Third World Congress on Information and Communication Technologies WICT*, IEEE, Hanoi, Vietnam, 2013. <https://doi.org/10.1109/WICT.2013.7113099>
- [9] Das, P., Fuzzy vector spaces under triangular norms. *Fuzzy Sets and Systems* 25 (1988), 73–85. [https://doi.org/10.1016/0165-0114\(88\)90101-7](https://doi.org/10.1016/0165-0114(88)90101-7)
- [10] Dogra, S. and Pal M., Picture fuzzy subring of a crisp ring. *Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.* (2020), <https://doi.org/10.1007/s40010-020-00668-y>
- [11] Dogra, S. and Pal M., Picture fuzzy subgroup. *Kragujevac J. Math.*, 47(6) (2023), 911–933.
- [12] Dogra, S. and Pal M., Picture fuzzy subspace of a Crisp vector space. *Kragujevac J. Math.*, 47(4) (2023), 577–597.
- [13] Dogra, S. and Pal M., Qin Xin. Picture fuzzy sub-hyperspace of a hyper vector space and its application in decision making problem. *JAIMS Mathematics*, 7(7)(2022): 13361-13382. doi: 10.3934/math.2022738
- [14] Dutta, P. and Ganju, S., Some aspects of picture fuzzy set. *Trans. A. Razmadze Math. Inst.* 172 (2018), 164–175. <https://doi.org/10.1016/j.trmi.2017.10.006>

- [15] Garg, H., Some picture fuzzy aggregation operators and their applications to multicriteria decision making. *Arabian Journal for Science and Engineering* 42(12) (2017), 5275–5290. <https://doi.org/10.1007/s13369-017-2625-9>
- [16] Hur, K., Jang, Su-Youn & Kang, Hee-Won, Intuitionistic Fuzzy Subgroupoids. *International Journal of Fuzzy Logic and Intelligent Systems*, 3(1)(2003), 72-77.
- [17] Jana, C., Senapati, T., Pal, M. and Yager, R. R., Picture fuzzy Dombi aggregation operators: Application to MADM process. *Applied Soft Computing* 74(2019), 99–109. <https://doi.org/10.1016/j.asoc.2018.10.021>
- [18] Jana, C. and Pal, M., Assessment of enterprise performance based on picture fuzzy Hamacher aggregation operators. *Symmetry* 11(75) (2019), 1–15. <https://doi.org/10.3390/sym11010075>
- [19] Katsaras, A. K. and Liu, D. B., Fuzzy vector spaces and topological vector spaces. *J. Math. Anal. Appl.* 58 (1977), 135–146. [https://doi.org/10.1016/0022-247X\(77\)90233-5](https://doi.org/10.1016/0022-247X(77)90233-5)
- [20] Kumar, R., Fuzzy vector spaces and fuzzy cosets. *Fuzzy Sets and Systems* 45 (1992), 109–116. [https://doi.org/10.1016/0165-0114\(92\)90097-N](https://doi.org/10.1016/0165-0114(92)90097-N)
- [21] Phong, P. H., Hieu, D. T., Ngan, R. H. and Them, P. H., Some compositions of picture fuzzy relations, in: *Proceedings of the 7th National Conference on Fundamental and Applied Information Technology Research*, Thai Nguyen, 2014.
- [22] Rosenfeld, A., Fuzzy groups. *J. Math. Anal. Appl.* 35(3) (1971), 512–517. [https://doi.org/10.1016/0022-247X\(71\)90199-5](https://doi.org/10.1016/0022-247X(71)90199-5)
- [23] Son, L. H., Generalized picture distance measure and applications to picture fuzzy clustering. *Applied Soft Computing* 46 (2016), 284–295. <https://doi.org/10.1016/j.asoc.2016.05.009>
- [24] Zadeh, L. A., Fuzzy sets. *Information and Control* 8(3) (1965), 338–353. [https://doi.org/10.1016/S0019-9958\(65\)90241-X](https://doi.org/10.1016/S0019-9958(65)90241-X)