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ABSTRACT 
 
 In this work, the effect of magnetic field on nonlinear thermal performance of convective-radiative fin with 
temperature-dependent internal heat generation is analyzed using homotopy analysis method. The results of the series 
solutions are verified analytically and numerically, and very good agreements are established. The symbolic solutions are 
adopted to explore the impacts of the model parameters on the performance of the passive device. It is found that as the 
coductive-convective, conductive-radiative and magnetic field parameters increase, the fin temperature distribution in the 
fin decreases which the heat transfer rate through the fin is augmented and hence, the fin thermal efficiency is improved. 
The temperature distribution in the fin increases through the fin as the nonlinear thermal conductivity parameter increases. 
It is hoped that the present study gives a good insight into nonlinear analysis of the extended surface which will aid proper 
design of the extended surfaces in thermal systems. 
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1. INTRODUCTION 
 

 The non-expensive but effective cooling of electronics and thermal systems have been achieved through 
the applications of passive devices such as fins [1]. The importance of the extended surfaces has provoked a large 
volume of research in literatures. The theoretical investigations of thermal damage problems and heat transfer 
enhancement by the extended surfaces have attest to the facts that the controlling thermal models of the passive 
devices are always nonlinear. Consequently, the nonlinear thermal models have been successfully analyzed in the 
past studies with the aids of approximate analytical, semi-analytical, semi-numerical, and numerical methods. In 
such previous studies, Jordan et al. [8] adopted optimal linearization method to solve the nonlinear problems in 
the fin, while Kundu and Das [9] utilized Frobenius expanding series method for the analysis of the nonlinear 
thermal model of the fin. Khani et al. [10] and Amirkolaei and Ganji [11] applied homotopy analysis method. In 
a further analysis, Aziz and Bouaziz [12], Sobamowo [13], Ganji et al. [14] and Sobamowo et al. [15] employed 
methods of weighted residual to explore the nonlinear thermal behaviour of fins. In another studies, methods of 
double decomposition and variation of parameter were used by Sobamowo [16] and Sobamowo et al. [17], 
respectively, to study the thermal characteristics of fins. Also, differential transformation method has been used 
by some researchers such as Moradi and Ahmadikia [18], Sadri et al. [19], Ndlovu and Moitsheki [20], 
Mosayebidarchech et al. [21], Ghasemi et al. [22] and Ganji and Dogonchi [23] to predict the heat transfer 
behaviour in the passive devices. With the help of homotopy perturbation method, Sobamowo et al. [24], 
Arslanturk [25], Ganji et al. [26] and Hoshyar et al. [27] scrutinized the heat flow in the extended surfaces. 
However, these studies are for thermal analysis of fin under assumed constant heat transfer coefficient. The cases 
of heat transfer with variable heat transfer coefficient along the passive device varies has also be investigated [28-
35]. Such analysis helps in providing the needed information on the efficiency, effectiveness, and design date of 
the extended surfaces under various boiling modes [33-44].  

 Since the thermal conductivities of fin materials are temperature-dependent, the influence of the 
temperature-dependent thermal properties on the performance of fin have been explored in past studies. However, 
Sobamowo et al. [45] presented in their work and showed some figures that show that the thermal conductivity 
of palladium is constant at a relatively low temperature. This depicts that the thermal performance of some 
materials has temperature-invariant thermal conductivity within some ranges of temperature. Moreover, influence 
of Lorentz force and temperature-variant internal heat generation on the temperature distribution of the extended 
surfaces is yet to be analyzed using homotopy analysis method. The analytical approach of homotopy analysis 
method reduces the complex mathematical analysis, high computational cost and time. Furthermore, under large 
values of thermo-geometric and nonlinear thermal conductivity parameters, it is established that applications of 
Adomian decomposition and homotopy perturbation methods are limited [46]. However, through an inherent 
property of auxiliary parameters for the adjustment and control of region and rate of convergence of approximate 
series solutions, homotopy analysis method has proven to be very an efficient and capable technique in handling 
nonlinear engineering problems in wider ranges of parameters. Therefore, the present work applies homotopy 
analysis method to provide analytical solution to the nonlinear heat transfer equation of convective-radiative fin 
with temperature-dependent thermal conductivity under the influences of magnetic field and with temperature-
dependent internal heat generation. The developed symbolic solutions are used to examine the effects of the 
thermal model parameters on the performance of the fin. 
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2. PROBLEM FORMULATION 
 

 Consider a longitudinal rectangular fin with pores having convective and radiative heat transfer, as shown 
in Fig. 1. In order to derive the thermal model of the porous fin, it is assumed that the porous medium is isotropic, 
homogeneous, and it is saturated with single-phase fluid. The physical and thermal properties of the fin and the 
surrounding fluid surface are constant. The temperature varies in the fin is only along the length of the fin, as 
shown in Fig. 1. and there is a perfect contact between the fin base and the prime surface.  
 
 

 
Figure 1. Schematic of convective-radiative longitudinal fin under even magnetic field. 

 
 
 
From the assumptions and with the aid of Darcy’s model, the energy balance is   
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Expansion of the first term in Eq. (1), it provides  
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The boundary conditions are 
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The internal heat general varies linearly with temperature as  
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When Eq. (4) is substituted into Eq. (2), one arrives at 
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The term T4 can be expressed as a linear function of temperature as 
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Substitution of Eq. (6) into Eq. (5), results in  
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It should be noted that 
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Applying the following adimensional parameters in Eq. (10) to Eq. (9),  
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One arrives at the adimensional form of the governing Eq. (9) as presented in Eq. (11),  
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we arrived at the dimensionless forms of the governing as follows;  
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and the dimensionless boundary conditions still remain the same. 
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However, if the thermal conductivity of the material varies with temperature, we have  
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3. APPLICATION OF HOMOTOPY ANALYSIS METHOD TO THE THERMAL PROBLEM 

 It can be seen that the above governing differential equation is highly nonlinear, and such nonlinearity 
imposes some difficulties in the development of exact analytical methods to generate closed form solution for the 
equation. Therefore, homotopy analysis method is used in this work. The homotopy analysis method (HAM) 
which is an analytical scheme for providing approximate solutions to the ordinary differential equations, is 
adopted in generating solutions to the ordinary nonlinear differential equations .Upon constructing the homotopy, 
the initial guess and auxiliary linear operator can be expressed as 
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Where  1,2,3,4ic i   are constants. Let  0,1P  connotes the embedding parameter and   is the non-zero 
auxiliary parameter. Therefore, the homotopy is constructed as 
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where   is chosen such that the series is convergent at p1; therefore, by Eq. (22) it is easily shown that 
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3.2.  M-Th Order Deformation Equations
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Now the results for the convergence, differential equation, and the auxiliary function are determined according to 
the solution expression. so we assume 
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Similarly θ3(η), θ4(η), θ5(η)… are found, but they are too large expressions that cannot be included in this paper. 
However, they are included in the results displayed graphically. From the principle of HAM  
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Therefore, substitute Eqs. (16), (28) and 29) into Eq. (30), we have 
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4. CONVERGENCE OF THE HAM SOLUTION 

 
 In order to control the convergence rate of   in the approximate analytical solutions given by HAM, Liao 
[47] presented the auxiliary parameter. It is established that the convergence rate of approximation for the HAM 
solution strongly depend on the value of the auxiliary parameter. For the 10th-order of approximation, different 
values of the model parameters are used for the different simulations to arrive at the acceptable range of values 
of the parameter  for the difference controlling parameters of the model.  
 

5. NUMERICAL PROCEDURE FOR THE ANALYSIS OF THE GOVERNING EQUATION 
 

 In order to verify the results of the present work, the nonlinear model in Eq. (9) was also solved 
numerically using fifth-order Runge-Kutta Fehlberg method (Cash-Karp Runge-Kutta) coupled with shooting 
method. Since Runge-Kutta method is for solving first-order ordinary differential equation, the fourth-order 
ordinary differential equation is decomposed into a system of first-order differential equations as follows:  
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The iterative scheme of the fifth-order Runge-Kutta Fehlberg method (Cash-Karp Runge-Kutta) for the above 
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 Using the above fifth-order Runge-Kutta Fehlberg method coupled with shooting method, computer 
programs are written in MATLAB for the solutions of the Eq. (9). The results for step size, h = 0.01 are presented 
in the following section. 

       
6.  PARAMETERS OF ENGINEERING INTERESTS 

 
In this section, the parameters of engineering Interest for the thermal problem are presented.  
 
6.1. Heat Flux and Efficiency Models of the Fin 

The fin base heat flux is given by 

bn c
dTq A k
dx

                                                                                                                                (37) 

Using the dimensionless parameters in Eq. (10), at the base of the fin, the dimensionless heat transfer rate is 
developed as 

( )
bn

b
a c b

q L dq
k A T T dX





 
                                                                                                              (38)                                                                                                                

 
The total heat flux of the fin is given by 

)( bc

b
T TThA

q
q


                                                                                                                         (39) 

After substitution of Eq. (39) and using the dimensionless parameters in Eq. (10), one arrives at 

1 1
T

k d dq
Bi h dX Bi dX

 
                                                                                                                 (40)                                                                                                     

 
The fin efficiency is the ratio of the rate of heat transfer rate by the fin to the rate of heat transfer that would be if 
the entire fin were at the base temperature and is given by 
 

2 3 2 21

0

2 3 2 2

( )( ) ( ) 4 ( )

( ) ( ) 4 ( )

p p a a a a o s

eff eff eff eff cr

p p b a b a a b a o s

eff eff eff eff cr

c gK sin T T h T T T T T B u A dx
k tv k t k t k A

c gK T T h T T T T T B u A
k tv k t k t k A

    


   

   
   

  
  

  


                        (41) 

Using the adimensional parameters in Eq. (10), we arrived at 
 

 1 1 12 2

0 0 0
2

S dX M Nr dX H dX

S M Nr Ha

 


  


  
                                                                                (42) 
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Which gives 
 

 1 12 2

0 0
2

S dX M Nr dX Ha

S M Nr Ha

 


  


  
                                                                                      (43) 

 

7. RESULTS AND DISCUSSION 
 

The numerical solutions are coded in MATLAB, and the parametric and sensitivity analyses are carried out using 
the codes. The parametric results are presented in Fig. 2-11.   

 Fig. 2 reveals that the fin temperature decreases when the magnetic field parameter increases. This is 
because when the magnetic field parameter increases, there is an increase Lorentz force which provides resistive 
force that opposes motion of the working fluid around the fin and consequently, the fin temperature decreases. 
It is illustrated in Fig. 3 and 4 about the influence of thermal conductivity parameters on the adimensional 
temperature profiles. The adimensional temperature distribution in the fin increases with increase in thermal 
conductivity parameter. It should be well pointed out that when 0  it implies a constant or temperature-
invariant thermal conductivity. The figure depicts that under the scenario of constant thermal conductivity, the 
fin achieves a lowest temperature distribution. Also, at such thermal conductivity that is temperature-invariant, 
steepest temperature gradient is achieved in the temperature profile. Therefore,  thermal conductivity of a material 
contributes significantly to the temperature difference between the fin base and its tip. This is because the thermal 
conductivity determines the thermal resistance that a material produces. Additionally, difference in temperature 
between the fin base and its tip is amplified when thermo-geometric parameters such as the conductive-
convective, conductive-radiative and porous parameters increase. It should be announced under temperature-
invariant thermal conductivity and maintaining constant fin properties and the external conditions, the fin thermal 
efficiency will remain constant when the fin temperature increases within the temperature range of constant 
thermal conductivity of the material.  

 The impact of porous parameter on the adimensional temperature is presented in Fig. 5 and 6. It is shown 
in the figures that when the porosity parameter increases, the adimensional fin temperature decreases and the heat 
transfer rate through the fin increases . Fig. 7, 8 and 9 show the influence of temperature-dependent thermal 
conductivity parameter on the adimensional heat transfer rate at the base of the fin at different radiation 
parameters.  Fig. 10 shows that increase in the thermal conductivity parameter, the heat transfer rate through the 
fin and the thermal efficiency of the fin increase. Fin is more efficient and effective for larger value of thermal 
conductivity. This trend was also depicted in Fig. 11. 
The present results from the simulations show that through an inherent property of auxiliary parameters for the 
adjustment and control of region and rate of convergence of approximate series solutions, homotopy analysis 
method has proven to be very an efficient and capable technique in handling nonlinear engineering problems in 
wider ranges of parameters. However, when the values of thermo-geometric and nonlinear thermal conductivity 
parameters are large, it is established that applications of Adomian decomposition and homotopy perturbation 
methods are limited [46].  
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Table 1. Comparison of results 
X         HAM         NUM    | NM – HAM | 

0.00 0.863499664 0.863499231 0.000000433 

0.05 0.863829046 0.863828568 0.000000478 

0.10 0.864817539 0.864817090 0.000000449 

0.15 0.866466182 0.866465743 0.000000439 

0.20 0.868776709 0.868776261 0.000000448 

0.25 0.871751555 0.871751104 0.000000451 

0.30 0.875393859 0.875393404 0.000000455 

0.35 0.879707472 0.879707010 0.000000462 

0.40 0.884696967 0.884696500 0.000000467 

0.45 0.890367650 0.890367181 0.000000469 

0.50 0.896725569 0.896725096 0.000000473 

0.55 0.903777531 0.903777060 0.000000471 

0.60 0.911531120 0.911530658 0.000000462 

0.65 0.919994710 0.919994259 0.000000451 

0.70 0.929177488 0.929177056 0.000000432 

0.75 0.939089476 0.939089079 0.000000397 

0.80 0.949741555 0.949741203 0.000000352 

0.85 0.961145491 0.961145189 0.000000302 

0.90 0.973313964 0.973313764 0.000000200 

0.95 0.986260599 0.986260549 0.000000005 

1.00 1.000000000 1.000000000 0.000000000 
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Figure 2.  Impacts of magnetic field parameter on fin thermal distribution. 

 

 
Figure 3. Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter. 

when Sh,= 0.2,  M=0.4 
 

 

 
Figure 4.  Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter 

when Sh,= 0.1,  M=0.4. 
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Figure 5.  Dimensionless temperature distribution in the fin parameters for varying thermo-geometric parameter 

for constant thermal conductivity.   
 

 
Figure 6.  Effects of porous parameter on the temperature distribution in the fin parameters for constant thermal 

conductivity.   
 

 
Figure 7.   Effects of thermal conductivity and porosity on heat flux when Mc=0.5, Nr=0.2. 
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Figure 8.  Effects of thermal conductivity and porosity on heat flux when Mc=2, Nr=0.3. 

 

 
Figure 9.  Effects of thermal conductivity and porosity on heat flux when Mc=2.5, Nr=0.4. 

 

 
Figure 10.  Effects of thermal conductivity and conductive-convective parameter on the fin efficiency when 

Mc=2, N=0.2, S=0.5. 
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Figure 11.  Effect of internal heat generation on the fin efficiency when Sh=0.5, Nr=0.2, γ=0.8.    

 
8. CONCLUSION 
 
 In this work, thermal performance of convective-radiative internally heated porous fin subjected to 
magnetic field has been analyzed using homotopy analysis method. The results of the homotopy analysis method 
are in excellent agreement with the results of the fifth-order Runge-Kutta Fehlberg method (Cash-Karp Runge-
Kutta) coupled with shooting method. From the study, it is found that increase in magnetic field, porosity, 
convective, radiative, and magnetic parameters fin cause the temperature to decrease and increase the rate of heat 
transfer from the fin and consequently improve the efficiency of the fin.  The homotopy analysis method gives 
the freedom of choosing the best the auxiliary parameter that could be used to adjust and control the convergence 
of the series solution. Such freedom of choice is not offered in the other approximate analytics methods.  
 
Nomenclature 

 Acr    fin cross sectional area, m2 

Bo    magnetic field intensity,,  Tesla or kg/sec2Amp 
 cpa    specific heat capacity, J/kgK 
  h      coefficient of convective heat transfer, W/m2K 
Jc     conduction current intensity, A 
k      fin thermal conductivity, W/mK 
kb       fin thermal conductivity at the base temperature, W/mK 
L      fin length, M  
Mc   adimensional convective parameter 
Nr    adimensional radiation parameter 
P     fin perimeter, m 
t      time, sec. 
T     fin temperature, K 
T∞   ambient temperature, K 
Tb   fin temperature at the base, K 
x     fin axial distance, m  
X    adimensional fin length  
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Greek Symbols 
 
δ    fin thickness, m 
θ    adimensional temperature 
θb   adimensional temperature at the fin base 
ρ    fin material density, kg/m3 
σ    Stefan-Boltzmann constant, W/m2K4 

σ    Electrical conductivity, Ω-1m-1 or sec2Amp2/kgm3 
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