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ABSTRACT

In this work, homotopy analysis and differential transformation methods are applied to study the thermal
performance of magnetohydrodynamic convective-radiative porous fin with temperature-invariant thermal conductivity.
Also, the effects of other parameters of the thermal model parameters on the heat transfer behaviour of the extended surface
are analytically investigated. The results show that as the inclination of fin, convective, radiative, magnetic, and porous
parameters increase, the adimensional fin temperature decreases, which leads to an increase in the heat transfer rate through
the fin and the thermal efficiency of the porous fin. It is established that the porous fin is more efficient and effective for
low values of convective, radiative, magnetic, and porous parameters. Apart from the fact that the work demonstrates the
ease of application of the two methods, it is hoped that study will help in proper thermal analysis of fins and in the design
of passive heat enhancement devices used for thermal and electronic systems.
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1. INTRODUCTION

The various applications of fins as passive cooling devices can be seen in thermal and electronics systems.
Although, solid fins have been applied avoid thermal damage or enhance thermal control of the thermal and
electronics equipment, further heat transfer enhancement has been achieved through the use of porous fins. The
importance of such fins in various thermal and electronic equipment aroused various studies. In these studies,
Kiwan and Al-Nimir [1] pointed out use of fins with pores for thermal augumentation of the extended surfaces.
Gong et al.[2] analyzed the perfomance of porous heat sink in micro-channel. Ali et al. [3] studied the infleunce
of fin heat sink geometry on the thermal management of electronics. In an ealier work. Saedodin [4] explored the
heat transfer in fin with pores under natural convection condition. Oguntala et al. [5] examined the impacts of
particles deposition on thermal performance of a convective-radiative porous fin. In another work, Sobamowo et
al. [6] also presented a study the performance of aporous fin under natural convection condition. However, the
effects of temperature-dependent thermal conductivity and internal heat generation was also considered in their
work. A study on transient heat transfer analysis of fins with different fin profiles having variable thermal
properties and internal heat generation was considered by Mosayebidorcheh et al. [7]. Kim and Mudawar [8]
investigated the heat flow in micro-channel heat sink different geometries. With the aid of differential
transformation method, Moradi et al. [9] analyzed the heat transfer in a convection-radiative triangular porous
fins with variable thermal conductivity. The influence of magnetic field on a convection-radiative rectangular
porous fins with variable thermal conductivity was investigated by Oguntala et al. [10]. Wan et al. [11]
experiementally studied the fluid flow and heat transfer in a miniature porous heat sink under high heat flux
application, while Naphon et al.[12] had earlier presented a numerical investigation of fluid flow and heat transfer
in the mini-fin heat sink. Optimum design and thermal stability of an extended surface with variable thermal
properties and internal heat generation was studied by Oguntala et al. [13] while Sobamowo [14] applied
Galerkin's method of weighted residual to examine the thermal performance of rectangular fin with variable
thermal properties and internal heat generation. Seyf and Feizbakhshi [15] submitted a computational study on
the effects of nanofluid on the heat transfer capacity of micro-pin-fin heat sinks. Fazeli et al. [16] presented both
experimental and numerical investigations of the effect of silica nanofluid on the heat transfer in a miniature heat
sink.

In the above reviewed works, various analytical and numerical methods have been employed to study the
heat transfer enhancement of the extended surfaces. In this present work, the ease of application and efficiency
of homotopy and differential transformation methods are demonstrated to study the thermal performance of
magnetohydrodynamic convective-radiative porous fin with temperature-invariant thermal conductivity. Also,
the effects of other parameters of the thermal model parameters on the heat transfer behaviour of the extended
surface are analytically investigated using the improved differential transformation method.

2. PROBLEM FORMULATION

Consider a longitudinal rectangular fin with pores having convective and radiative heat transfer, as shown
in Fig. 1. In order to derive the thermal model of the porous fin, it is assumed that the porous medium is isotropic,
homogeneous, and saturated with single-phase fluid. The physical and thermal properties of the fin and the
surrounding fluid surface are constant. The temperature varies in the fin is only along the length of the fin, as
shown in the Fig. 1. and there is a perfect contact between the fin base and the prime surface.

-127 -



World Scientific News 208 (2025) 128-143

Convection Radiation

Figure 1. Convective-radiative longitudinal fin with pores.

From the assumptions and with the aid of Darcy’s model, the energy balance is

q. —(qx +%dxj+q(T)dx =mc,(T-T,)+ hP(l—é:)(T—];)dx+0'£P(T4 —];4)dx+udx (1)
X o
The fluid flows through the pores at the rate of mass flow given as
m = pu(x)Wdx 2)
Also, the fluid velocity is given as
gK B (T T,
u(x)= L 3)
1%
Then, Equ. (1) becomes
K
q, ‘(% +@de L T,)" dx
ox v @)
4 4 J.xJ
+hP(1—¢&)(T —T,)dx+oeP(T* =T, )dx + ~—<dx
o
As dx—0, Eq. (3.5) reduces
K
—%zwq—mz FhP(1-&)(T~T)+ oeP(T* T+ 22 7e (5)
X v o
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Applying Fourier’s law for the heat conduction in the solid, one has

ar
—k, A, 6
eff dx ( )

where the effective thermal conductivity of the fin is given as
ky =@k, +(1- @)k, (7)
According to Roseland diffusion approximation, the radiative heat transfer rate can be written as

404, dT“ .

q:

From Egs. (6) and (8), the total rate of heat transfer is given by
dT 404, dT*
keff o, (9)
. dx 38, dx

q=-

Substitution of Eq. (9) into Eq. (6) leads to

4
d k4, dr 404, dT :pcpg Kp, (T-TY
dx d 3p, du

(10)
+hP(1—g)(T—7;)+agP(T4—T;‘)+M

Expansion of the first term in Eq. (10), provides the governing equation for the required heat transfer

2 4 K
d §+ 40 d (dr*) pc,gKp, (T-TY
A 3Bk, dxl dx kv
g ' (11)
h(1-
_M(T_];)_G_E(T“_T;‘ JCX‘]CZO
kit kot

The boundary conditions are

x=0, d_T: 0,
dx (12a)
x=L, T=T, (12b)
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But

Jxde _ g (13)
O

After substitution of Eq. (13) into Eq. (11), we have

d £ (T-1,)’
dx 3ﬂRkeff dx\ dx kef}"tv

_ 2,2
H0=8) oy gy OB 1

kot ket kA, ‘

d2T+ 4o d[a’T‘*J pe,gKp,

(14)

The term T* can be expressed as a linear function of temperature as
T*=T.+4T (T -T,)+6T; (T—TOO)2 +..=4T°T 3T} (15)
Substitution of Eq. (13) into Eq. (11), results in

d’T, 160 d'T _pc,gKp,
A 3k, Akt

(T—T,) sin(y)
o

h 1 3 2 2 (16)
M) gy AT gy TB gy

kot kot ko Ay

Applying the following adimensional parameters in Eq. (15) to Eq. (14),

vox g IoL o _ekB(G-T)L e PE
L T,-T, " avk, kot

3 4o LT’
— 4o-xtToo ,N}’; :#’ Ha. :@. (17)

3Bk ket L kg4,

Rd

One arrives at the adimensional form of the governing Eq. (16) as presented in Eq. (18),

2

d
1+4Rd
(1+4Rd)—

62’—Shl.sin(}/)l92 —Nc[(l—g)G—erﬂ—HalH:O (18)

and the adimensional boundary conditions

x=0, _ (192)
ax

X=1, 6=1 (19b)
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Which can be written as

2

d-o .
F—Shszn(y)ﬁz —Nc(l—g)Q—NrH—HatS’:O (20)

where

S, Nc, Nr,; Ha,

S, =—"— N _Hd
"T{1+4Rd)”  (1+4Rd)’  (1+4Rd)’ ' (1+4Rd)

3. APPLICATION OF HOMOTOPY ANALYSIS METHOD TO THE NONLINEAR THERMAL
PROBLEM

It can be seen that the above governing differential equation is highly nonlinear, and such nonlinearity
imposes some difficulties in the development of exact analytical methods to generate closed form solution for the
equation. Therefore, homotopy analysis method is used in this work. The homotopy analysis method (HAM)
which is an analytical scheme for providing approximate solutions to the ordinary differential equations, is
adopted in generating solutions to the ordinary nonlinear differential equations .Upon constructing the homotopy,
the initial guess and auxiliary linear operator can be expressed as

6,(X)=1 21)
L(e) = 9” (22)
L(, X +¢,)=0

(23)

Where ¢, (i =1, 2,3,4) are constants. Let P =€ [0,1] connotes the embedding parameter and 7 is the non-zero

auxiliary parameter. Therefore, the homotopy is constructed as

3.1. Zeroth-order deformation equations

(1-p)L[6(X; p)-6,(X) ]| = phH(X)N[O(X; p)]

(24)
0'(0;p)=0; 6(Lp)=1; (25)
when p=0 and p=1we have
O(X;0)=6,(X) ; O(X;1)=0(X) (26)
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As p increases from 0 to 1. (X;p) varies from 6,(X) to 6(X). By Taylor’s theorem and utilizing Eq. (20), 6(X;p)
can be expanded in the power series of p as follows:

1 9"(0(X;p))

m

0P =000+ 20,000" 0=
" ' p=0 (27)

where 7 is chosen such that the series is convergent at p=1; therefore, by Eq. (27) it is easily shown that

0(X) =6,(X)+36,(X) o

3.2. m-th order deformation equations

L6, (1) = 2,6,. (D] =hH(X)R, (X)

(29)
6'(0; p)=0; 6(1;p)=0; (30)
where
R,(X) =—d29d(;i;p ) -, (siny)ien,l,kek ~((Ne(1-&)+Nr+ Ha)) ), , (1)

Now the results for the convergence, differential equation and the auxiliary function are determined according to
the solution expression. Therefore, we assume

H(X)=1 (32)

The analytic solution is developed using the MATLAB computational stencil. Hence, the first deformation is
expressed below

6(X)= —%h(Shsin(7)+(Nc(l—5) +Nr+Ha)) X* +%hShsin(7) +%h(Nc(1—g) + Nr+ Ha) (33)

0,(X) = %hz (=S, sin(y) —(Ne(1- &)+ Nr+ Ha) ) (28, sin(y)— (Ne(1- &) + Nr + Ha)) X*

| —hS,sin(y)— h(Nc(l - 6‘) + Nr+ Ha) - 1S, sin(y) - i’ (Nc(l - 6‘) + Nr+ Ha) (34)
— X2
i 2| -1 (Shsin(}/))2 —%hz (Nc(l - 8) + Nr+ Ha)y’ —%thhsin(]f)(Nc(l - 8) + Nr+ Ha)

+%hz(Nc(l—g)-kNr-kHa)2 +§h2(Nc(l—5)+Nr+Ha)+%h(Nc(1—g)+Nr+Ha)

+%h2Shsin(y) +% hz(Nc(l —5) + Nr+ Ha) +%hShsin(;/) +%h2 (Shsin(}/))2
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Similarly 8.(n), 6.(n), 0:(n)... are found, but they are too large expressions that cannot be included in this paper.
However, they are included in the results displayed graphically. From the principle of HAM

9(X)=00(X)+iﬁm()()=90(X)+6’1(X)+02(X)+... (35)

m=1

Therefore, substitute Egs. (25), (33) and (34) into Eq. (35), we have

A(X) :1—%h(Shsin(;/) +(Ne(1-¢)+Nr+ Ha)) X +%hShsin(;/) +%h(Nc(1—g) + Nr+ Ha)

+% 1 (=S, sin(y)—(Ne(1— &)+ Nr+ Ha))(-2S,sin(y) — (Nc(1- &) + Nr+ Ha) ) X*
S, sin(y)~h(Ne(1=&)+ Nr + Ha)~ 1S, sin(y) = 1" (Ne(1~ ) + Ni-+ Ha) (36)

1 x?

+7
2| - (Shsin(}/))2 —%hz(Nc(l—g) +Nr+ Ha)’ —%thhsin(}/)(Nc(l—g) + Nr+ Ha)
+2—54h2(Nc(1—5)+Nr+Ha)2+§h2(Nc(l—g)+Nr+Ha)+%h(Nc(l—g)+Nr+Ha)

+%h2Shsin(;/) +%h2(Nc(1 —&)+Nr+ Ha)+%hShsin(y) +%h2 (Shsin(}/))z +..

3.3. Convergence of the HAM solution

In order to control the convergence rate of 7 in the approximate analytical solutions given by HAM, Liao
[17] presented the auxiliary parameter. It is established that the convergence rate of approximation for the HAM
solution strongly depend on the value of the auxiliary parameter. For the 10th-order of approximation, different
values of the model parameters are used for the different simulations to arrive at the acceptable range of values
of the parameter 7 for the difference controlling parameters of the model.

4. METHOD OF SOLUTION: DIFFERENTIAL TRANSFORM METHOD

The nonlinear thermal model is also solved using differential transformation method. The definition and
the operational properties of the method can be found in our previous work [31]. The differential transformation
of the governing differential equation in Eq. (19) is given as

(1+4Rd ) (k +1)(k +2)Ok +2) - S, sin( y)zk: O()O(k —1)— Ne(1-£)O(k) — NrO(k) — Ha®(k) =0 (37)

1=0
and the boundary condition in Eq. (20)
k=0, 9(1) =0
k
Yo(l)=1 = 6(0)=4 (38)

Eq. (37) could be further simplified as
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1
(1+4Rd ) (k +1)(k +2)

Ok +2) = {Shsin(y/)zk: OOk 1)+ Ne(1- £)0(k) +Nr®(k)+H®(k)} (39)

Which can be written as

S,sin(y) K Nc(1-€)+ Nr+ Ha
2[6Mek-D]+ (k+1)(k+2)(1+4Rd)

Ok +2)= O(k) (40)

(k+1)(k+ 2) 1 + 4Rd ,:0

Now for the counter k=0, 1, 2, 3..., N in Eq. (40), we have

©(0)=1
0(1)=0

1 o[ S,sin(y) Nc(1-&)+ Nr+ Ha
®(2)_5[1 ((1+4Rf1)]+’1( (1+4Rd) J]
0(3)=0

o)= %LM [(f”fl”é?) J "3 ((szlz(e?)l = (_1;+):R]Zr)+ - J H ( = (_I?IR]23+ - N

1044 M 3+20/13 S,sin(y) ’ NC(1—5)+NI’+Ha
0(6)=—. (1+4Rd) (1+4Rd) (1+4Rd)
720 1122 | Swsin(y) Ne(1-£)+ Nr+Ha 2+ 1 Ne(l-)+ Nr+ Ha |
(1+4Rd) (1+4Rd) (1+4Rd)
0(7)=0
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4 3 5
o1’ M +2004% S,sin(y) Nc(l-¢€)+ Nr+ Ha
(1+4Rd) (1+4Rd) (1+4Rd)
3 ~
( ):L +162.43 S,sin(y) Nc(l1-&)+ Nr+ Ha ’
40320 (1+4Rd) (1+4Rd)
~ 3 -
ane| SisinG) \( Ne(=)+ Nr+ Ha ) Ne(1-2)+ Nr+ Ha ‘
(1+4Rd) (1+4Rd) (1+4Rd)
©(9)=0
5 4 ~
1000A° Sysin(y) +30004° Sysin(y) Nc(1-¢)+ Nr+Ha
(1+4Rd) (1+4Rd) (1+4Rd)
+31704* Sysin(y) ’ Ne(1— &)+ Nr+ Ha ’
1 (1+4Rd) (1+4Rd)
©(19) =3 52800 ) 3 .
+1340° S,sin(y) Nc(1-¢)+ Nr+ Ha
(1+4Rd) (1+4Rd)
| S \(Ne(=2)+ Nr+ta | Ne(l=2)+ Nr+Ha |
(1+4Rd) (1+4Rd) (1+4Rd)
O(11)=0
6 5 _
1760047 Sysin(y) +616001° S,sin(y) Nc(1-¢)+ Nr+ Ha
(1+4Rd) (1+4Rd) (1+4Rd)
180560 | Su5in(r) "(Ne(1-2)+ Nr+Ha |
(1+4Rd) (1+4Rd)
3 ~ 3
@(12):; +474002% Sysin(y) Nc(l1-¢&)+ Nr+ Ha
476001600 (1+4Rd) (1+4Rd)
+11522.43 S,sin(y) ’ NC(I—;)+NF+Ha )
(1+4Rd) (1+4Rd)
. 5 3 .
o3| Ssin@) | Ne(—&)+ Nr+Ha | [ Ne(l—¢)+Nr+Ha
(1+4Rd) (1+4Rd) (1+4Rd)
®(13)=0
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(1+4Rd)

4180004° (

S, sin(y)

S,sin(y)

,
+16720004’
(1+4Rd)

‘ Nc(l—;)+Nr+Ha
(1+4Rd)

S,sin(y)

+2604000°
(1+4Rd)

S,sin(y)

(

~ 2
Nc(l—g)+Nr+HaJ

Nc(1 —g) + Nr+ Ha

19600004° [

(1+4Rd)}4

S, sin(y)

3

(1+4Rd)
|

(1+4Rd)

+70873004*
(1+4Rd)

S,sin(y)

Nc(l—g‘)+Nr+Ha )
(1+4Rd)

Nc(1-€)+ Nr+ Ha

2
+1014604°
(1+4Rd)

JZ

(1+4Rd)

S,sin(y)

Ne(1-€)+ Nr+ Ha

2731/12[(“4&1)}[

128480004’ (
+1045048004"
+959588004°

+463094404°

©(16)

0(17)=0

~ 20922789888000

+107806004"

S, sin(y)

(1

(1+4Rd)

+4Rd )

ShSl.}’l(ﬂ/)

8 7
+578160004°
(1+4Rd)

6 ~
) Nc(l1-¢g)+ Nr+ Ha
(1+4Rd)

T

S, sin(y)

Nc(1-£)+ Nr+ Ha

(1+4Rd)

[(1+4Rd)

S,sin(y)

5 ~ 3
Nc(1-¢€)+ Nr+ Ha

‘ Nc(1- &)+ Nr+ Ha ’
(1+4Rd)

(1+4Rd)

Sysin(y)

4 ~ 4
Nc(1-&)+ Nr+ Ha

(1+4Rd)

(1+4Rd)

S, sin(y)

(1+4Rd)

3 ~ 5
Nc(l1—&)+ Nr+Ha

(1+4Rd)

(1+4Rd)

+9040822° [

S,sin(y) |
(1+4Rd)

Ne(1- &)+ Nr+ Ha

~ 6
Nc(1—5)+Nr+HaJ

Nc(1-€)+ Nr+ Ha

+109234° {

S,sin(y)
(1+4Rd)

(1+4Rd)
)

(1+4Rd) (1+4Rd)
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9 g _
4966720001 M +2483360001° S,sin(y) Nc(l-¢g)+ Nr+ Ha
(1+4Rd) (1+4Rd) (1+4Rd)

S,sin(y) ' NC(1—2)+NV+HQ ’
(1+4Rd) (1+4Rd)

+51095120004°

6 ~ 3
S,sin(y) | | Ne(1-&)+ Nr+ Ha

+55378880004"
(1+4Rd) (1+4Rd)

~ 4
133481250004 | S5 | [ Ne(1—=¢£) + Nr + Ha
: (1+4Rd) (1+4Rd)

O(18)=
( ) 642373705728000

4 ~ 5
S,sin(y) Nc(1—&)+ Nr+ Ha

+10918790004°

(1+4Rd) (1+4Rd)
’ - 6
166874690 | Sisin(2) | [ Ne(l—¢)+ Nr + Ha
(1+4Rd) (1+4Rd)

: - 7
+81003804° | S5y | | Ne(l—¢&)+ Nr+ Ha
(1+4Rd) (1+4Rd)

14369142 S,sin(y) Ne(1- &)+ Nr+ Ha 8+/1 Nc(1- &)+ Nr+ Ha ’
(1+4Rd) (1+4Rd) (1+4Rd)

From the definition of DTM, we have
0(X)=0(0)+0()X +02)X* +O(3) X’ +O(4) X" +O(5)X° +O(6) X° +...+ O(N) X" 41)

Therefore,

H(X):/1+%(,12al+/1a2))(2+ (213%2 +3’12“1a2+0‘1“22)X4+%(1014a5+2013a,2a2+11/12a]a22+,1aj))(6+

1
24
ﬁ(m,ﬁal“ +2002% e, +162 2 af ey +430 a0 +/1d;)Xx +

1
3628800
! 1760047 ! +616002°; e, +805604° et + 474004 el +)
—_— X+
476001600( 11522 %} + 6832 % a0} + At
| 4180002 +16720004afa, +26040004°a}a; +19600002'atar ),
_ +
871782912001 +70873004 c'ar; +1014604°c ) + 2731 %t + Acx]
| 128480000’ +578160002°c] @, +1045048007 a e} + 959588004 afec} + )
20922789888000  463094404° e er? +107806001 cs’cr’ +9040824°a ad +10923 ey cx] + At
4966720001"°c;’ +2483360004°c*cr, +51095120004%; a2 + 55378880001 o’} (42)
+33481250001°c’’ +1091879000°c} ] +1668746904 cc’cr! +81003804° %] + | X' + .
43691 ° a0 + Aary

(10002°a +30002°afa, +31704'aa; +1340°a ey +1T1 Xyt + A ) X +

1
642373705728000
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where

S, sin(y) Nc(1—&)+ Nr+ Ha
| :7, aZ =
(1+4Rd) (1+4Rd)

The unknown values of A in the Eq. (42) is found from the boundary conditions in Eq. (19b)

1 1 1
o(1)=2+ E(ﬂzal +a, ) +a(2/13a12 +3 a0, + a0 ) + %(10/14(113 +20 % a, +11 %05 + Al ) +
1

M(801505;‘ +2001 ' ajar, +1620°afa; + 4307y + Al ) +

1
3628800
1 [17600/170:16 +616002°a’a, +80560°a e’ + 474001 a} +] N
476001600 115224} + 6837} + Ay
1 [418000/180:17 +16720002" af e, + 26040004’ cx; + 1960000/15afa23J+
87178291200 ( +70873004 e cry +1014602° ') + 2731 e axs + Acx)

1 (12848000/1"1118 +578160004° ) @, +1045048001" ol a? + 959588004’ cx; +] .\
20922789888000{ 463094401 °cr;' cr; +107806004 a;'ax; +9040821° > +109234° v, + At}
4966720001 a; + 248336000 cfer, +51095120002%] a2 + 55378880001l cx;
+3348125000A°c;’cr; +10918790004°cx;' oz +1668746904 a)xf +8100380°a’er] + |+... =1
43691 a0l + Aty

(10002°¢ +30004° ' er, +31704' '} +13402°af i +1712° e, + 2] ) +

1
642373705728000

Table 1. Different values of the unknown 4 for the different values of various parameters of the model

Rd Nc Nr Ha € Sh Y o oL A
0.5 0.6 0.1 0.7 0.8 0.1 /2 0.0333 0.3066 0.8527
0.5 0.6 0.1 0.7 0.8 0.3 /2 0.1000 0.3066 0.8313
0.5 0.6 0.1 0.7 0.8 0.6 /2 0.2000 0.3066 0.8023
0.5 0.6 0.1 0.7 0.8 0.9 /2 0.3000 0.3066 0.7762
0.5 0.1 0.2 0.6 0.7 0.3 /2 0.0714 0.1976 0.8819
0.5 0.3 0.2 0.6 0.7 0.3 /2 0.0714 0.2119 0.8762
0.5 0.6 0.2 0.6 0.7 0.3 /2 0.0714 0.2333 0.8679
0.5 0.9 0.2 0.6 0.7 0.3 /2 0.0714 0.2547 0.8597
0.8 0.5 0.1 0.3 0.2 0.7 /2 0.3181 0.3636 0.7549
0.8 0.5 0.3 0.3 0.2 0.7 /2 0.3181 0.4545 0.7291
0.8 0.5 0.6 0.3 0.2 0.7 /2 0.3181 0.5909 0.6929
0.8 0.5 0.9 0.3 0.2 0.7 /2 0.3181 0.7272 0.6592
0.6 0.1 0.7 0.1 0.4 0.5 /2 0.1470 0.2529 0.8360
0.6 0.1 0.7 0.3 0.4 0.5 /2 0.1470 03117 0.8155
0.6 0.1 0.7 0.6 0.4 0.5 /2 0.1470 0.4000 0.7862
0.6 0.1 0.7 0.9 0.4 0.5 /2 0.1470 0.4882 0.7584
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5. RESULTS AND DISCUSSION

The approximate analytical solutions are coded in MATLAB, and the parametric and sensitivity analyses
are carried out using the codes. However, before the parametric and sensitivity analyses, the results of the
developed solutions are verified with the results of numerical method (NM) using fourth-order shown in Table 2.
The reduced lower marginal differences between the results of the DTM and that of the HAM confirms the higher
level of accuracy of the DTM than HAM, as shown in the Table 2.

Table 2. Comparison of results.

The results of HAM, DTM and Numerical methods for 9(X) for Rd = 0.5, £=0.1, Sp= 0.4, Nc = 0.3, Nr=0.2, Ha = 0.1, A=0

O(X)

X NUM HAM DTM (present work) Error of DTM Error of HAM

0.00 0.863499231 0.863499664 0.863499158 0.000000073 0.000000433
0.20 0.868776261 0.868776709 0.868776195 0.000000066 0.000000448
0.40 0.884696500 0.884696967 0.884696438 0.000000062 0.000000467
0.60 0.911530658 0.911531120 0.911530606 0.000000052 0.000000462
0.80 0.949741203 0.949741555 0.949741166 0.000000037 0.000000352
1.00 1.000000000 1.000000000 1.000000000 0.000000000 0.000000000

The impacts of convective, radiative, magnetic, and porous parameters on the adimensional temperature
distribution, heat transfer at the fin base, and thermal efficiency of the fin are presented in Figs. 3-7. It is shown
in the figures that when the inclination of fin, convective, radiative, magnetic, and porous parameters increase,
the adimensional fin temperature decreases. It could be stated that low values of inclination of fin, convective,
radiative, magnetic, and porous parameters favour thermal performance or efficiency of the fin. Therefore, the
porous fin is more efficient and effective for relatively low values of fin inclination, convective, radiative,
magnetic, and porous parameters.
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Figure 4. Effects of Hartmann number on the adimensional temperature distribution in the fin.
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Figure 5. Effects of convective parameter on the adimensional temperature distribution in the fin.

Fig. 3 shows the effect of inclination of fin on the dimensionless temperature distribution in the fin. The

figure shows that as the inclination of fin increases (the vertical distance of the prime surface increases), the
adimensional temperature distribution in the fin decreases (the fin thermal profile falls, as shown in the figure).
The reduction in the local temperature of the fin as the inclination of the fin increases is due to increase in the
driving force for convection and buoyancy of the working fluid around the extended surface.
Fig. 4 illustrates the effect of Hartman number (magnetic field parameter) on the adimensional temperature
distribution in the fin. The temperature in the fin decreases as the magnetic parameter increases. Increase in the
magnetic parameter or Hartmann number causes increase in Lorentz force which provides resistive force that
opposes motion of the working fluid around the fin and consequently decreases the temperature of the fin.
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Figure 6. Effects of radiative parameter on the adimensional temperature distribution in the fin.
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Figure 7. Effects of porous parameter on the adimensional temperature distribution in the fin.

Fig. 5 and 6 presents the influences of convective and radiative parameters on the dimensionless temperature
distribution in the fin, respectively. The figures show that as the convective and radiative parameters increase, the
adimensional local temperature in the fin decreases as the convective and radiative parameters. This is because,
as the convective and radiative parameters increase, the effects of convective and radiative heat transfer on the
fin surface increase, thereby, more heat is loss through the surface of the fin. As a consequent, surface temperature
of the fin drops (the fin thermal profile falls) and the rate of heat transfer from the fin increases as the convective
and radiative parameters increase. It should be noted that the low value of the convective and radiative parameters,
Nc and Nr implies a relatively thick and short fin of very high thermal conductivity, while a high value of the
convective and radiative parameters indicates a relatively thin and long fin of a very low thermal conductivity.
Therefore, the thermal efficiency of the fin is favoured at low values of convective and radiative parameters, i.e.
a relatively thick and short fin with a high thermal conductivity.

Fig. 7 shows the impact of porous parameter on the dimensionless temperature distribution in the fin. The figure
shows that as the porous parameter (Rayleigh number) increases, the adimensional temperature in the fin
decreases. The fin temperature decreases as the porosity parameter increases because of the increase in the
permeability of fin which makes the working fluid to infiltrate more through the pores of the fin and increase the
buoyancy force effect. Consequently, more heat is taken away from the surface of the fin as the temperature falls
more. This establishes that the thermal efficiency of the fin increases as the Rayleigh number is enlarged.

From the above parametric studies, it could be clearly stated that the fin is more efficient and effective for
relatively low values of inclination of fin, convective, radiative, magnetic, and porous parameters. However, these
values of these parameters should be properly selected to avoid thermal stability in the fin.
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6. CONCLUSION

This work has demonstrated a comparative application of homotopy analysis and differential
transformation methods to study the thermal performance of magnetohydrodynamic convective-radiative porous
fin with temperature-invariant thermal conductivity. Also, the effects of other parameters of the thermal model
parameters on the heat transfer behaviour of the extended surface are analytically investigated using the methods.
Therefore, the present work will help in the proper analysis of fin and in the design of passive heat enhancement
for thermal and electronic systems.

Nomenclature

A cross sectional area, A, porous fin base area
¢, specific heat capacity of the fluid passing through porous fin,
h  heat transfer coefficient

kerr effective thermal conductivity

L fin length

Ra Rayleigh number

Rd Radiation number

t  fin thickness of the fin

T, temperature at the fin base

T fin temperature

T, ambient temperature, K

u  fluid average velocity

x  axial length of the fin

X dimensionless fin length

w  width of the fin width

dimensionless temperature
porosity or void ratio
kinematic viscosity

fluid density of the fluid
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