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ABSTRACT

The integration of artificial intelligence (AI) in cardiology has significantly transformed diagnostic and
preventive strategies in cardiovascular medicine. In 2024, advancements in machine learning and deep learning have
enabled the processing of multimodal clinical data, including imaging, electrocardiograms, genomics, and wearable
device outputs. This article reviews the latest research on the application of Al in early detection, risk stratification, and
personalized prevention of cardiovascular diseases (CVD). Emphasis is placed on Al-enhanced echocardiography,
cardiac MRI, telemedicine, and continuous patient monitoring. Additionally, the development of adaptive and federated
learning models ensures improved accuracy, data privacy, and real-time clinical applicability. Finally, the integration of
socio-economic and environmental factors into Al models marks a significant shift toward holistic and equitable
cardiovascular care. The article outlines the current capabilities, future directions, and ongoing challenges of
implementing Al in clinical cardiology.
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1. INTRODUCTION

The Need for Innovation In Cardiovascular Diagnostics
1.1. The Global Burden of Cardiovascular Disease Continues to Rise

Cardiovascular disease (CVD) remains the leading cause of death worldwide, generating tens of
millions of deaths and a huge number of disability-adjusted life years (DALYSs) lost. Despite therapeutic
advances, the burden remains high or is increasing in many low- and middle-income regions, as well as in the
ageing populations of highly developed countries. Global Burden of Cardiovascular Diseases and Risks data
from 1990 to 2022 show the persistent magnitude of the problem and the geographical variation in mortality
rates and risk factors, highlighting the need for more effective, scalable, and targeted detection and prevention
strategies [1].

1.2. Shortcomings of Traditional Diagnostic Methods

Classical cardiac diagnosis is based on a multi-step combination of ECG signals, imaging studies
(mainly echocardiography), biomarkers, and clinical assessment. This process can be time-consuming, prone
to inter-observer variability, and limited by the availability of specialised personnel. Advances in the
automation of echocardiographic measurements show that many tasks (e.g. heart cavity volume
measurements, Doppler waveform tracking) can be reduced from minutes to seconds with high
reproducibility, potentially easing the burden on clinicians and shortening the diagnostic pathway [2]. In
addition, the complexity of phenotypes, such as heart failure with preserved ejection fraction (HFpEF), and
the difficulty in accurately classifying heart failure in daily practice promote delayed diagnosis and suboptimal
treatment. At the same time, this is an area where artificial intelligence (Al) algorithms can support earlier
identification of high-risk patients [3].

1.3. Limited accuracy of Generalized Risk Calculators and need for Personalisation

Traditional risk scales (e.g. Framingham, SCORE) were developed on a population-based basis, which
do not always reflect today's ethnically and environmentally diverse global population. As a result, risks are
sometimes underestimated or overestimated in specific groups, leading to inappropriate stratification and
allocation of prevention resources. Scoping reviews and critical analyses indicate that Al-based models that
integrate clinical, imaging, and environmental data can support more personalised cardiovascular disease
(CVD) risk assessment and improve the identification of patients requiring more intensive prevention [4].
Furthermore, prognostic platforms based on single tests, such as ECGs, are beginning to provide individual
survival and event risk curves (e.g. mortality, heart failure, arrhythmias), moving stratification from the
population level to the patient level [5]. Additional evidence from analyses of models learning the 'biological
age' of the heart from ECG suggests that subtle signal features may be associated with increased cardiovascular
risk before overt structural changes occur [8].

1.4. Silent Phenotypes: Structural Disease, Diastolic Dysfunction and Early Failure

Many cardiac conditions develop secretly. Patients remain asymptomatic until advanced lesions or the first
major incident occurs. Deep learning models analysing standard ECGs have demonstrated the ability to detect
structural heart disease (e.g. valvular defects, myocardial hypertrophy) with a sensitivity that exceeds
physicians' assessments, which can serve as a low-cost and widely available initial screening test for referral
to echocardiography [6].
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In contrast, AI-ECG platforms developed to estimate the risk of mortality, heart failure, and arrhythmic
events from a single ECG recording confirm that the electrical signal contains hidden prognostic information
[5]. In the area of imaging, hybrid multi-task approaches (e.g. MMnet) can automatically segment cardiac
structures, determine diastolic parameters, and classify the degree of dysfunction according to scientific
societies' schemes, which may improve the detection of HFpEF and early functional impairment [7]. In
parallel, heart failure reviews highlight that early detection of subclinical changes is key to improving
prognosis and that Al tools can help by integrating multiple data sources [4].

1.5. Data Explosion and the Burden on Health Systems

The digitisation of healthcare is generating huge volumes of data. These include electronic medical
records, high-resolution multidimensional imaging studies, continuous haemodynamic monitoring, data from
wearable devices, and repeated ECGs and echocardiograms. Manual integration of these streams exceeds
clinicians' time capacity and increases the risk of omissions. Automated Al tools in echocardiography can
reduce analysis time and improve measurement consistency; similarly, algorithms to process complex clinical
and signal data support earlier identification of patients at risk of decompensation [2, 4]. In addition, more
sophisticated prognostic platforms learning from large, heterogeneous datasets (e.g. multinational registries,
population-based data) open the way to scalable cardiovascular health surveillance at a system level [3, 8].

1.6. Why Now? A Tipping Point for AI Deployments In Cardiology

The combination of several trends - the global and persistent burden of CVD, the paucity of staff
resources and diagnostic variability, the limitations of traditional risk calculators, the growing number of
patients with phenotypes difficult to diagnose early, and the explosive growth of digital data - creates an urgent
need for innovation in cardiac diagnostics. Early results from research into deep learning algorithms applied
to ECGs and echocardiography suggest a real opportunity to shift diagnosis to earlier, more precise, and more
widely available identification of patients at risk, which could translate into a reduction in the global burden
of cardiovascular disease in the long term.

2. AI IN MEDICINE - GENERAL APPLICATIONS AND DEVELOPMENT HISTORY
2.1. Definition and Breakdown of Artificial Intelligence in the Context Of Medicine

Artificial intelligence (Al) in medicine is a field that combines computer algorithms with clinical data
to support diagnosis, prognosis, therapeutic, or administrative decisions. There are several main categories of
Al: machine learning (ML), including deep learning (DL), supervised and unsupervised learning, and
knowledge-based models (knowledge-based systems). ML methods, especially those based on neural
networks, which can analyze large, non-linear data sets and uncover patterns that are invisible to humans,
dominate clinical practice [9]. Al is now used in almost all specialities, from medical imaging analysis to
prediction of treatment outcomes in oncology, neurology, psychiatry, or cardiology [10].

2.2. Milestones in the Development of AI In Medicine

The history of Al applications in medicine dates back to the 1970s, when the first expert systems such
as MYCIN were developed to diagnose bacterial infections based on symptoms and laboratory results [11].
However, it was not until the development of computing power, access to big data, and the rise of GPU
graphics in the second decade of the 21st century that Al applications, particularly deep learning networks
(CNNs, RNNs), exploded.
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Breakthrough publications, such as the paper by Estev et al. (2017) showing that CNN algorithms can
recognise skin cancers on dermatoscopic images with accuracy comparable to dermatologists, have sparked a
wave of research into Al applications in diagnostic medicine [12].

In 2018, the FDA for the first time approved an Al-based system without physician supervision - IDx-DR, an
algorithm for diagnosing diabetic retinopathy from fundus images. This was a milestone in the clinical
implementation of autonomous Al systems [13].

2.3. Key Application Areas for AI In Medicine (As of 2024)

In 2024, the most common applications of Al in medicine span several areas. In laboratory diagnostics,
Al supports the analysis of MRI, CT, PET, mammography, X-ray, and echocardiography, improving the speed
and accuracy of interpretation [14]. Al algorithms also support segmentation of anatomical structures,
assessment of organ function, and detection of pathological changes. In genetics, transcriptomics, and
proteomics, Al allows the identification of biomarkers, the discovery of new therapeutic targets, and the
stratification of patients for personalised therapy [15]. Predictive models based on EHR (Electronic Health
Records) data predict rehospitalisation risk, organ failure, mortality, or the effects of surgical interventions,
among others [10]. Al also supports emergency room decisions by classifying patients according to priority
and predicting the need for hospitalisation [16]. Virtual assistants and medical chatbots also support medical
interviews, symptom monitoring, and medication reminders. Al systems are also being developed to assess
the mental state of patients by analyzing speech or behavioural patterns [17].

2.4. Ethical and Technical Challenges of AI In Medicine

The use of AI in healthcare presents significant challenges, including a lack of transparency in
operation ('black box'), the risk of overconfidence in the model, problems in generalising models to new
populations and data, and risks to patient privacy [ 18]. Inequalities arising from training data are also critically
analyzed; algorithms learned on data from highly developed countries may not perform well in other
populations. Therefore, a strong emphasis in 2024 has been placed on the development of transparent and

equitable Al as reflected, among others, in the WHO recommendations for the implementation of Al in public
health [19].

3.2024 BREAKTHROUGH TECHNOLOGIES IN CARDIOLOGY
3.1. AI In ECG Analysis - Invisible Information In The Signal

The electrocardiogram (ECG) is one of the oldest and most common diagnostic tools in cardiology,
but its interpretation in its traditional form is sometimes limited to obvious abnormalities. Since 2020, there
has been a growing body of research using artificial intelligence, especially neural networks (CNNs, RNNs,
transformer networks), to identify subtle patterns in the ECG that may be indicative of structural disease,
arrhythmias, or even predict risk of death. Among others, a paper by Sau et al. was published in 2024,
describing the AIRE platform, which estimates the risk of mortality and cardiovascular events from a single
12-lead ECG with high predictive accuracy, exceeding classical risk scales [20]. Another study in 2024
demonstrated that Al can identify heart failure with preserved ejection fraction (HFpEF) from ECG data, even
before the onset of symptoms, representing a potential breakthrough in primary prevention [21].
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The FDA-approved Anuman AI-ECG tool (a collaboration with Mayo Clinic) can detect asymptomatic
left ventricular dysfunction, previously invisible on classic ECG interpretation, and is undergoing clinical
trials in the UK and US [22].

3.2 Al In Cardiac Imaging: Echocardiography, MRI, CT

Cardiac imaging is the gold standard for assessing cardiac function and structure. However, the
analysis of echocardiography or cardiac MRI requires advanced training, is time-consuming and fraught with
subjectivity. Al algorithms capable of automatically segmenting anatomical structures and determining key
parameters are coming to the rescue. Among others, a paper was published in 2024 on the MMnet model,
which combines deep learning with classical machine learning and automatically classifies diastolic
dysfunction, segments cardiac cavities, and determines indices such as E/e' (an echocardiographic parameter
used to assess left ventricular diastolic function) [23].

In the area of cardiac MRI, Al models have been developed that allow accelerated scanning and
reconstruction of high-resolution images from accelerated data. This reduces examination time by up to 70%,
improving patient comfort and diagnostic accessibility [24].

In computed tomography (CT), Al aids in the detection of atherosclerotic plaques, classification of
their stability, and allows automatic quantification of ejection fraction or cardiac cavity volume indices. One
example is a system under development in 2024 called DeepCCTA, which is being tested in a multicentre
study comparing its accuracy with classic expert assessment [25].

3.3. Prediction of Cardiovascular Incidents

Prediction of incidents such as myocardial infarction, stroke, or sudden cardiac death is one of the most
promising areas for Al. 2024 has published work using ECG data, echocardiography, and medical records to
create complex predictive models. In a study conducted at the Mayo Clinic, using data from more than 500,000
patients, Al successfully predicted death at a 1-year horizon based on single ECG and demographic data [22].

Other studies show that Al can predict AF up to three years in advance using ECG signals analyzed
by neural networks [26]. This is particularly important because early detection of this arrhythmia allows stroke
prevention to be introduced.

3.4. Al-assisted therapies: treatment selection and personalisation

Although Al is today mainly a diagnostic tool, 2024 saw the first attempts to use it to support
therapeutic decisions. One example is EchoGo Heart Failure, an Al-based system approved by the FDA to
classify patients with HFpEF and predict their response to different treatment strategies [27]. There is also
current parallel research into the use of Al to optimise programming of implantable devices (ICDs, CRTs),
where analysis of ECG waveforms and event history allows personalized settings. This may improve
prognosis and reduce hospitalisation rates [28].
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4. EXAMPLES OF CLINICAL TRIALS STARTING IN 2023-2024

4.1. AI-ECG Studies in the Detection of Left Ventricular Dysfunction (Anumana/Mayo Clinic, UK-
NHS)

One of the most clinically advanced applications of Al in cardiology is a project by Anumana,
developing artificial intelligence algorithms to detect asymptomatic LV dysfunction solely from 12-lead ECG
data. The study, called EVALEUS (Evaluation of AI-ECG for LV Dysfunction Screening), started in 2023 in
partnership with the UK NHS and at several US centres, including the Mayo Clinic. The aim of the study is
to evaluate the effectiveness of the Al tool for screening heart failure in high-risk populations (e.g. type 2
diabetes, hypertension) [29]. The study involves the recruitment of more than 30,000 patients aged 45+, and
its protocol involves comparing the accuracy of AI-ECG with a classical diagnostic approach (imaging + NT-
proBNP). Preliminary results from 2024 suggest that AI-ECG can achieve a sensitivity of more than 85% and
a specificity of 80% in the detection of systolic dysfunction at a much lower cost [30].

4.2. Al In Echocardiography: The VALIDATE Study (Echogo HF)

In 2023, the VALIDATE-HF multicentre clinical trial was launched to clinically validate the EchoGo
Heart Failure software (from Ultromics). This tool uses Al to automatically analyze echocardiographic images
and classify the type of heart failure (HFrEF, HFpEF, HFmrEF) without the involvement of a cardiologist.
Hospitals in the US, Canada, and the UK are participating in the study. The algorithm analyzes Doppler
spectra, ventricular volumes, and diastolic parameters and matches them with clinical outcomes to predict
prognosis and treatment response. Preliminary results show that Al improves the detection of HFpEF by more
than 20% compared to classic assessment by an echocardiographer [31]. Importantly, EchoGo HF received
FDA approval (De Novo clearance) in January 2024, becoming the first Al system for HF classification
commercially implemented in the US [32].

4.3. The Ahead-Al Project - Real-Time Myocardial Infarction Prediction

In Europe, the AHEAD-AI study, funded by Horizon Europe, was launched in 2024 to evaluate the
effectiveness of an Al-based prediction algorithm that integrates data from ECGs, wearable devices,
biomarkers, and EHR documentation for real-time prediction of myocardial infarctions (STEMI/NSTEMI) in
ambulatory populations. The study is being conducted in Germany, Spain, and the Netherlands, with a planned
recruitment of 12,000 at-risk patients (hypertension, atherosclerosis, coronary artery disease). Al generates
real-time alerts that go to cardiology teams to enable earlier intervention (e.g. earlier PCI). The model is based
on a transformer architecture with an attention mechanism to explain its predictions (explainability) [33].

4.4. Early Detection of Atrial Fibrillation - The SAFER-AI Trial

In the UK, the SAFER-AI study, an extension of SAFER (Screening for Atrial Fibrillation using
Enhanced Recording), was initiated in 2023. This project uses Al to analyze data from mobile ECG devices
(e.g. KardiaMobile, Apple Watch) for early detection of atrial fibrillation (AF), particularly its asymptomatic
and paroxysmal forms. The NHS-led study includes more than 50,000 participants over the age of 65. Al
algorithms, trained on data of millions of episodes of sinus rhythm and AF, outperform classical detection
algorithms and have a diagnostic accuracy similar to that of electrophysiologists (AUC > 0.95) [34]. The
results are of great importance for stroke prevention. Indeed, early detection of AF allows anticoagulants to
be used before the first stroke occurs [35].
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5. POTENTIAL CHALLENGES - SAFETY, AVAILABILITY, COST
5.1. Safety and Reliability of AI Algorithms

The introduction of Al into cardiac diagnostics carries the risk of misclassifications and false alarms,
which may lead to unnecessary interventions or abandonment of treatment. The safety of Al therefore,
requires rigorous clinical validation and continuous monitoring after implementation in practice. Research
from 2024 suggests that although algorithms based on deep learning achieve high performance, their
performance may be sensitive to changes in the quality of the input data, such as artefacts in the ECG signal
or errors in echocardiographic imaging [36]. In addition, the so-called "black box effect, i.e., the lack of full
transparency of the performance of Al models, remains a problem, making their auditing and interpretation of
decisions difficult. In response, explainable Al (XAI) methods are increasingly being implemented to
understand and validate key decision factors [37].

5.2. Technology Availability and Healthcare Inequalities

The development of advanced Al technologies in cardiology raises questions about their accessibility
for different patient groups. In developed countries, deployments are moving fast, while in regions with limited
resources (developing countries, rural areas) access to modern diagnostics remains limited. Sociological and
economic studies from 2024 have shown that the cost of infrastructure (hardware, software, training) and the
lack of interoperability of electronic medical record systems are the main barriers to Al implementation [38].
In addition, algorithms are often taught on data mainly from populations of developed countries (European,
North American bases), which may result in reduced effectiveness in ethnic or demographic groups poorly
represented in training data. This, in turn, exacerbates inequalities in healthcare [39].

5.3. Implementation Costs and Funding Models

Implementation costs for Al in cardiology include the purchase of licences, equipment for recording
high-quality data (e.g. advanced ECGs, echocardiographers with Al features), staff training, and maintenance
of IT systems. Preliminary economic analyses from 2024 indicate that, while Al can reduce diagnostic costs
in the long term through automation and reduced examination times, the initial investment is significant, which
is a barrier especially for smaller facilities [40]. Various funding models are being tested, including SaaS
(software as a service) subscriptions, public reimbursement, and integration with value-based healthcare
(VHR) systems. The introduction of standardisation and regulation of Al including guidelines for
reimbursement and clinical effectiveness evaluation, is key to widespread implementation [41].

5.4. Ethical and Regulatory Aspects

The use of Al in medical diagnostics requires clearly defined regulations regarding liability for errors,
protection of personal data, and transparency in the operation of systems. In 2024, the European Commission
published updated guidelines for the certification of medical Al devices, emphasising patient safety,
compliance with RODO and the obligation of continuous monitoring after implementation [42]. There is also
the issue of patient consent for the use of Al in diagnosis and patient education on the capabilities and
limitations of the technology. Research from 2024 indicates that patient acceptance of Al is increasing, but
there is still a need for transparent communication and trust-building [43].
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6. FUTURE DEVELOPMENTS AND INNOVATIONS IN AI IN CARDIAC DIAGNOSTICS
6.1. Integration of Multimodal Clinical Data

The future of Al in cardiology is primarily the development of systems able to integrate data from
different sources: ECG, echocardiography, cardiac magnetic resonance imaging (MRI), genetic data, and
continuous monitoring via wearable devices. In 2024, a study was published showing that multimodal deep
learning models outperform single data sources in accuracy, allowing for more accurate diagnosis and
prediction of the course of cardiovascular disease [44]. As an example, an Al model combining ECG signals,
echocardiographic images, and biomarker profiles was able to accurately classify heart failure subtypes and
predict the risk of hospitalisation with an accuracy of more than 90% [45].

6.2. Al and Personalized Medicine

Another direction is the use of Al to create personalised treatment plans. By analyzing the patient's
genetic, metabolomic, and lifestyle data, AI can support therapeutic decisions, selecting the optimal
pharmacotherapy or indicating the best intervention strategies. In 2024, the first results of the CardioGenAl
project were published, in which a machine learning model helped identify patients most susceptible to adverse
effects of cardiovascular drugs and predicted response to SGLT2 inhibitors for the treatment of heart failure
[46].

6.3. Al In Diagnostics Based on Advanced Imaging (4D Echo, MRI)

Cardiac imaging technologies are developing rapidly, especially 4D echocardiography and MRI with
tissue mapping. In 2024, Al models were introduced that automatically segment cardiac structures, analyze
flow dynamics, and assess myocardial status, which previously required lengthy analysis by specialists.
Studies have shown that Al can identify small fibritic changes and calcifications in the myocardium, which
are predictors of arrhythmias and deterioration of systolic function, opening up new possibilities in the early
diagnosis of cardiomyopathies [47].

6.4. Development of AI Systems for Real-Time Monitoring and Telemedicine

Al will increasingly be used for continuous monitoring of patients outside the hospital by analyzing
data from smartwatches, wristbands, implants, or wearable devices. The HeartWatch Al project (2024) used
deep learning models to analyze ECG and pulse oximetry signals, allowing earlier detection of arrhythmias
and warning of the risk of sudden cardiac death [48]. Telemedicine with Al, meanwhile, enables remote
assessment of a patient's condition, reducing the need for hospitalisation and improving accessibility to care,
particularly in rural areas and countries with limited medical resources [49].

6.5. Technical Challenges and Further Algorithm Development

Work continues to improve the computational efficiency of Al models, their robustness to noise and
incomplete data, and their ability to learn on the fly (online learning). Increasingly, federated learning
techniques are being used that allow models to be trained on geographically dispersed data without being
centralised, thus increasing patient privacy [50]. In addition, algorithms capable of autonomous anomaly
detection and adaptation to new disease patterns (e.g. new COVID-19 variants affecting the heart) are being
developed, which will increase their use in a rapidly changing clinical environment [51].
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7. APPLICATION OF AI IN CARDIOVASCULAR RISK PREDICTION AND
PERSONALIZED PREVENTION

7.1. Advanced Cardiovascular Risk Prediction Models

Artificial intelligence (AI) has revolutionised approaches to cardiovascular disease (CVD) risk
prediction by enabling the analysis of huge clinical datasets and genetic data. Al models using machine
learning can identify subtle patterns in data that are not apparent with traditional statistical methods. In a study
by Liu et al. (2024) presented an Al model that integrates electronic medical record (EMR) data, laboratory
results, and patient lifestyle, achieving a cardiovascular incident prediction accuracy of 92%, outperforming
classic scales such as Framingham Risk Score or SCORE [52].

7.2. Personalisation Of Prevention Based on Al Prediction

By accurately determining individual risk, Al allows for the tailoring of preventive strategies such as dietary
modification, exercise programmes or pharmacotherapy selection. Al systems can also recommend the
frequency of follow-up examinations, minimising both the risk of complications and unnecessary
interventions. The PreVentAl project (2024) demonstrates that patients enrolled in personalised Al-based
prevention programmes had 30% lower rates of hospitalisation for myocardial infarction compared to a control
group using traditional methods [53].

7.3. Using Data From Wearable Devices For Continuous Monitoring And Prevention

Al enables the analysis of data from wearable devices (e.g. smartwatches, fitness bands) that collect
information on physical activity, heart rate, blood saturation, or sleep quality. Analysis of this data allows for
early detection of risk factors such as arrhythmia or hypertension and immediate health recommendations. A
study by Zhang et al. (2024) used Al to predict episodes of atrial fibrillation based on PPG signals from
wearable devices, allowing the implementation of effective preventive measures [54].

7.4. Integrating Socio-Economic and Environmental Data in Prediction

A novel approach is for Al models to also take into account socio-economic and environmental data
(e.g. exposure to air pollution, access to healthcare, stress levels), which have a significant impact on CVD
risk. A study by Patel et al. (2024) showed that integrating these data with classical biomarkers improves the
prediction of cardiovascular events by about 10 percent, paving the way for more comprehensive and equitable
preventive care [54].

7.5. Challenges In Implementing Predictive Models

Despite progress, there are challenges in integrating Al models into everyday clinical practice. There is a need
to ensure interoperability of systems, standardisation of data, and transparency of algorithm performance so
that clinicians have confidence in the predictive results. In addition, there is a need to continuously monitor
the models to ensure that they are up-to-date and adapt to changing epidemiological and demographic trends
[55].
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8. CONCLUSIONS

The integration of artificial intelligence into cardiovascular medicine marks a transformative step
toward more precise, efficient, and personalized healthcare. Current AI models outperform traditional
diagnostic tools in detecting subtle patterns in multimodal data, allowing for early and accurate diagnosis of
heart diseases. Furthermore, predictive algorithms that include socio-economic, genetic, and environmental
factors are redefining cardiovascular risk assessment, moving beyond classical clinical parameters. Al-based
approaches in cardiac imaging, real-time monitoring, and remote care via wearable devices are enhancing
early intervention and patient safety, particularly in underserved populations. The emergence of federated
learning and adaptive algorithms also promises broader implementation while preserving data privacy and
dynamic model improvement.

However, successful clinical adoption will require continued efforts in standardizing data collection,
improving algorithm transparency, and ensuring ethical oversight. When responsibly deployed, Al has the
potential not only to optimize cardiovascular diagnostics and prevention but also to contribute significantly to
the global reduction of heart disease burden.
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