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ABSTRACT   

Superconductivity was observed in the Kagome metals cesium vanadium antimonide (CsV₃Sb₅) or CVS at the 
critical transition temperature Tc = 2.5K. But the resistivity of the CVS started decreasing even around 4K, and vanished at 
1K. In general, for superconductors, the resistivity suddenly drops to zero at Tc. In Kagome metals, such a gradual drop in 
resistivity starting well above the bulk transition temperature (Tc) was observed in thin superconducting compound 
signifying existence of a fluctuating regime of superconductivity where Cooper pairs may be present in a disorganized form. 
In general, charge-2e Cooper pairs should persist from 4K (pre-formation of Cooper pairs before Tc) to Tc and below, and 
should give rise to 
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, Quantized flux) resistance oscillations. Instead, the experimental observations led to the 

existence of oscillations at the flux period of 
e

h
6

 between 2K and 3K; and of 
e

h
4

 between 1K and 2K; and the 
e
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2

 period 

becoming dominant in the zero-resistance regime below 1K only.  
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Thus, the periodicities 

e
h

4
 and

e
h

6
 could emphatically mean that two 

e
h

4
 and/or three 

e
h

6
 Cooper pairs may 

coalesce into Cooper molecules with Cooper molecules having a total charge of 4e and/or 6e.  
Since a Cooper pair behaves effectively as a boson, these Cooper molecules can be treated as bosons, and a theory 

is presented, which describes the condensed state of these bosons. An expression is obtained for the quasi-particle energy 
in the condensed state, and this is used to calculate the specific heat (Cv), and the transition temperature (Tc). Charges of 
Cooper molecules will determine the magnitudes and variation of Cv and Tc with T. 
 
Keywords: Kagome metals, Quantum Flux, Flux Periodicities, Cooper molecules, Condensed state. 
 
 

1. INTRODUCTION 

Superconductivity appears at some critical transition temperature Tc at which resistivity of the material 
becomes zero. Very large currents, of the order of 105A flow; two electrons combine to form pairs of electrons 
called Cooper pairs, effectively doubling the charge of the electric charge carriers in the superconducting state 
[1,2]. This is roughly the story of all types of superconductors; conventional and unconventional. 

So far, the magnetic flux quantum Wb.
e

h
o

15100672
2

  is the same for all types of superconductors, and 

the magnetic flux quantum is due to the motion of Cooper pairs that carry an electric charge of 2e. It is still not 
exactly known as to what is the specific interaction between the charges in the Cooper pair, and how two similar 
charges form a bound attractive system. As a rule, nature must have devised the same type of interaction between 
charges constituting the Cooper pair for all types of superconductors. Thus, since Φ0 is a universal constant being 
composed of two universal constants, the interaction between the charges in the Cooper pair should also be a 
universal constant since Φ0 is a consequence of the motion of Cooper pairs. 

We get flux quantization when a charged particle travels in a field-free region  00  B,E  that surrounds 
another region in which there is trapped magnetic flux Φ. Then, on completing a closed loop, the particle's wave 
function will acquire an additional phase factor. But the wave function must be single-valued at any point in space. 

Thus the motion of charges in the fields free region leads to non-dissipative persistent currents. In 1959, 
Y. Aharonov and D. Bohm [3] theoretically predicted that a relative phase shift can exist even when the electron 
beams pass only through spaces free of electric field (E) and magnetic field (B). It refers to the phenomena where 
the wave function of the charged (particle) quantum particle acquires a phase due to the vector potential along its 

path, leading to inference chances caused by the magnetic flux. If θ is the phase, then a wave function r.ike  can 
become  r.kie . It should be mentioned that persistent current is a non-dissipative equilibrium property for all 
states below Fermi energy. In fact, persistent currents and consequence of Aharonov-Bohm [3] effect, and 
according to its effect, which is a quantum mechanical phenomena, an electrically charged particle is affected by 
an electromagnetic potential despite being confined to a region in which both the electric field (E) and the 
magnetic field (B) are zero. 

So far, a large number of conventional and unconventional superconductors have been studied both 
experimentally and theoretically.  
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To this, a very recent addition is the superconductivity of two-dimensional atomic layers of Kagome metal. 
The structure of this two-dimensional Kagome crystal resembles a traditional Japanese basket weave called 
Kagome [4, 5, 6, 7].  

In fact, Kagome metals are a promising system of materials to explore when looking for interesting phases 
of matter [9][10]. The quasi-two-dimensional Kagome materials such as KV3Sb₅; RbV3Sb₅; CsVb₃Sb₅, are 
important examples of Kagome superconductors. These present a new quantum platform to investigate the 
correlation between electron correlations effects, topology and geometric frustration [10]. The superconducting 
properties of Kagome metals, especially the important pairing symmetries and the interplay between 
superconductivity and the charge density wave state, have been reviewed and studied experimentally and 
theoretically. It is found that each Kagome metal in this family of materials has different critical parameters.   

For instance, for CsVb₃Sb₅, the critical magnetic field T.Hc 40 (T = Tesla) which is quite small; the 

zero-field  0cH  resistivity P(T) variation leads to the superconducting (SC) ground state at Tc = 2.3K. The 
measurements showed well-defined Meissner effect and the specific heat showed sharp entropy anomaly at the 
superconducting transition (SC-t). It is found that the resistivity P(T) of       K V₃Sb₅ drops to zero at Tc = 0.93K ; 
and for RbV₃Sb₅, 0)T(P  at Tc = 0.75K . Thus, this family of materials are superconducting at quite low 
transition temperatures [10]. 

Recently, it is found that a superconductivity theory proposed by Wuzburg physics team has been 
validated in a universal experiment that showed that the Cooper pairs display wave-like distortions within the 
sublattices in Kagome metals [11]. In fact, the unique crystal geometry of Kagome metals combines in it unique 
distinctive properties such as electronic, magnetic, and superconducting. 

In a recent experiment on Kagome metals, it is found that when the Kagome metals are in the 
superconducting state, an exotic metal harbours charge carriers which appear to have 4 and 6 times the charge of 
a single electron, suggesting the formation of Cooper pair molecules [9]. The bulk CVS has a transition 
temperature Tc = 2.5K , and its resistivity P(T) starts decreasing at about 4.0K, and vanished at about 1K. For a 
thin superconducting compound, such a drop in resistivity, spread over a temperature gap, and well above the 
transition temperature is very much expected. This marks a fluctuating regime of superconductivity in which 
Cooper pairs are present in a disorganized fashion. 

It should be a general understanding that charge- 2e Cooper pairs should persist up to 4K, and the 

resistance oscillation should be oe
h


2

. Instead, the experimental observations showed evidence of resistance 

oscillations at the first period
e

h
4

 between 1K and 2K; and flux period of
e

h
6

  between 2K and 3K, with the 
e

h
2

  

period becoming dominant in the zero-resistance regime only below 1K. 

 

 



- 4 - 

 

World Scientific News 202 (2025) 4-14 
 

 This means in different temperature ranges, and in the superconducting state, Cooper pairs with charge 
2e  and combinations of Cooper pairs with charge 4e and 6e could carry the superconducting current; and this 

implies that the periodicities
e

h
4

 and 
e

h
6

 confirm the possibility that two, and or three Cooper pairs, somehow 

coalesce into Cooper molecules, with a total charge 4e and/or 6e. A flux periodicity of
e

h
2

  was experimentally 

observed long ago [8].  

Obviously, observation of new periodicities, 
e

h
4

 and 
e

h
6

 point to the existence of some new type of exotic 

interaction between electrons in the Cooper pairs and Cooper molecules. The question is as to what do the Cooper 
pairs look like as they orbit around each other in Cooper molecules. Thus, composite quasi-particles could lead 
to the understanding of superconductivity in Kagome metals. We have now to decide how to write the 
Hamiltonian of the system in which Cooper pairs and Cooper molecules may exist simultaneously, and the 
superconducting state is spread over a range of temperatures such that the Cooper pairs and Cooper molecules 
play a dominant role over a range of temperatures. Since the Cooper pairs and molecules are composed of an even 
number of fermions, they can be effectively treated as bosons. The theory of second quantization and the 
Bogoliubov theory for interacting bosons leading to superfluidity can be used to obtain the quasi-particle energy 
(Ek) for such an assembly; and then obtain the expressions for specific heat (Cv) and transition temperature (Tc) 
[12, 13] [14] [15–18]. 

2. THEORETICAL DERIVATIONS 

  The superconducting state in Kagome metal superconductors seems to be composed of two-electron pairs 
and 4-electron and 6-electron Cooper molecules [7]. Recent experimental observations led to the existence of 

oscillations at a flux period of
e

h
6

 between 2K and 3K and of 
e

h
4

 between 1K and 2K, the 
e

h
2

period becoming 

dominant in the zero resistance regime below 1K only. Hence, the periodicities 
e

h
4

 and
e

h
6

 could emphatically 

mean that the two (2×2e) and/or three (3×2e) Cooper pairs may coalesce into Cooper molecules with Cooper 
molecules having a total charge of 4e and or 6e. A Cooper pair, being composed of two fermions, can behave as 
an effective boson, and similarly, the Cooper molecules can behave as bosons. Thus, at very low temperatures in 
the range 0K to 3K; the superconducting state can be described as the condensed state of free bosons that can flow 
without dissipation, leading to very large superconducting currents. Although in the different temperature ranges, 
the composition of the charge carriers differs, but all of them behave as effective bosons. Consequently, the theory 
of second quantization is used to write down the Hamiltonian (H) of the system of bosons, and the Bogoliubov 
canonical transformation is used to diagonalize the Hamiltonian (H) to obtain the quasi-particle energy of the 
system. 
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3. IAGONILIZATION OF THE HAMILTONIAN FOR A SYSTEM OF INTERACTING 
PARTICLES USING THEORY OF SECOND QUANTIZATION 

The principle of second quantization are used to write down the Hamiltonian (H) of a system of iteracting 
particles. The Hamiltonian is composed of the kinetic energy and potential energy. It is assumed that the potential 
energy is due to pairing interaction between the particle and the three or more particle interactions are neglected 
assuming that they are very small when compared to the pair interaction. Such an assembly of particles is said to 
be weakly interacting. There are two types of particles, fermions with spin 

2
1 , and bosons with integer spins (0, 

1, 2, …). Hamiltonians for both the systems can be written and diagonalized. 

For a weakly interacting assembly of bossons, the Hamiltonian is written as, 

H = Kinetic energy + Potential energy 

  


 
k

kkkkkkkkk ''' aaaaGaaH
1221112

1       (1) 

Here, 
ka  and ka  are the creation and annihilation operators that satisfy the usual commutation relations for 

bosons. In the second term of Eq.(1), momentum conservation is assumed when the sum is carried out over all 
values of momenta '' k,k,k,k 2121  such that, 

 1
2121 kkkk '           (2) 

In the interaction process (second term of Eq. (1)) leading to scattering, it is clear that a particle with momentum 
'k1  is destroyed  '

ka
1

 and it goes to reappear as a particle with momentum  
11 kak such that the momentum transfer 

is 'kk 11  . Similarly, the particle with momentum 'k2  is destroyed  'ka
2

 and reappears as a particle with 

momentum   
22 kak , such that the momentum transfer to this second particle is 'kk 22  . For the conservation of 

momentum of these two particles, the momentum transfer to both the particles must be equal in magnitude but 
opposite in sign, i.e.,  

   ''' kkkkkk 222211   

Or '' kkkk 2121   

The G in Eq. (1) represents the interaction between the particle with momentum 1k   and the particle with 

momentum 2k   and is given by Eq. (3), where 21

21

k,k
k,k ''G  is the Fourier transform of G 

         212121
2121

21

21
rrr,rGrrG '''' kkkk

k,k
k,k           (3) 
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 where s'  are the wave functions associated with the particles, and  21 r,rG  represents the form of two-body 
interaction between a pair of particles, and also, 

                          kk GG             (4) 

 which asserts the in-variance of the two-body interaction G under time reversal. If there is no interaction between 
the particles, then G = 0 ; the ground state will be k = 0 , and hence all the particles will be in the state k = 0 , and 
this state is called condensed state or zero-momentum state (ZMS).  

The total number of particles, N , can be distributed among the excited states with 0k , and the condensed state 
k = 0 , and hence one can write:  

 



0

0
k

kk aaNN          (5) 

 where No= number of particles in the state k = 0. 

The Hamiltonian H is diagonalized by using the Bogoliubov canonical transformation to obtain stationary 
states or to yield a system of non-interacting quasi-particles whose energy spectrum depends on the coefficients 
of the Bogoliubov canonical transformation, also called the Bogoliubov-Valatin transformation. It should be 
understood that the Bogoliubov-de Gennes Hamiltonian is a mean-field Hamiltonian (mean-field means that the 
particles move in an average potential created by the interactions between all the particles. It is treated as aconstant 
potential, say, Vo), i.e, a one-body quadratic Hamiltonian in which the Hamiltonian is composed of the products 
of creation operators  a   and annihilation operators   a   [15-18]. 

 Now, to diagonalize the Hamiltonian H  using the Bogoliubov canonical transformations, new operators  0   are 
introduced and they connect with the old operators   a  via the transformation constants ku  and kv  which are 

real constants.  i.e, kk uu   and kk vv   . i.e, We write: 

 
 kkkkk avau                         (6) 

With the condition that , 

122  kk vu           (7) 

Here  s'k  satisfy the same commutation laws as the  ka , and these laws are for bosons since when two 
fermions (electron-electron or electron-hole) combine, they effectively behave as bosons.  The Hermitian 
conjugate of Eq. (6) can be solved to give:   


 kkkkk vua             (8) 
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Commutation laws for boson operators are: 

 
   
 

212

0
1

kkkk

kkkk

kkkkkk

a,a
a,aa,a

aaaaa,a













         (9) 

 
Using the values of  ka  and   

ka  from Eq. (8) and the commutation laws in Eq. (9), the Hamiltonian H can be 
written as: 

 2011 HHuH             (10) 

Where:   

  



0

22

2
1

k
kkkkkko vuNGvNGGNu       (11) 

    kk
k

kkkkkkk vuNGvuNGH  




0

22
11 2      (12) 

      






 



 

0

22
20 2

1
k

kkkkkkkkkkk vuNGvuNGH    (13) 

In writing the values of ,H  terms of higher orders in oN  have been dropped since they give corrections of higher 
order in  G which is assumed to be small parameter.   

It is evident that H  will get diagonalized if we arrange things such that 020 H  . The Hamiltonian H then becomes, 

  

k
kkkEuH          (14) 

And this Hamiltonian describes a set of independent quasi-particles of energy kE , such that:   

   kkkkkkkk vuNGvuNGE 222         (15)  

The condition for vanishing of 20H  gives:   

    02 22  kkkkkkk vuNGvuNG          (16) 

Eqs. (7) and (16) are to be solved simultaneously for ku  and kv  to get the dispersion formula for kE . 
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We now let:   

xcoshuk    and xsinhvk  , since 122  kk vu ;     (17) 

xsinhvu kk 22           (18) 

 

xcoshvu kk 222           (19) 








 








 




22

xxxx eexsinhandeexcosh  

 

Thus from Eq. (16), we get:   

kk

k

NG
NGxtanh


          (20) 

And from Eq. (20), we can write:   

  21222
2

kkk

k

GNNG

NGxsinh


        (21) 

 

  21222
2

kkk

kk

GNNG

NGxcosh



        (22) 

Substituting Eqs. (21) and (22) into (18) and (19) give the values of kkvu  and 22
kk vu  , and substituting these in Eq. 

(16) gives the dispersion formula for kE as: 

  21222
kkkk GNNGE          (23) 

       2
1

2 2 kkkk GNE          (24) 

Now in the limit k , in Eq. (23), the second term goes to zero much faster than the first term, and hence:   

 kkkk NGE            (25) 
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And in the limit 0k , in Eq. (24), the first term goes to zero faster than the second term, and hence:   

 2
1

0 2 kokk NGE            (26) 

It is to be understood that the non-singular two-body potential goes to zero as k ; i.e.,   

0 kG,k.Lim          (27) 

Now, to bring in the temperature dependence for the energy excitation formula, we multiply kE  by the many-

body thermal activation factor: T
E

k

k

eEE 


 (here    is the Boltzmann constant) and finally write the quasi-particle 
energy dispersion formula as E, that is,   

T
E

k

k

eEE 


           (28)         

The specific heat vC  is written as:   












T
ECv           (29) 

The transition temperature cT  is obtained as:  

0







 cTT

v

T
C           (30) 

 

4. CALCULATIONS 

Recent experimental observations [7] show that the superconducting state in the Kagome metals super 
conductors have different types of Cooper pairs in the temperature ranges 0K to 1.0K , 1.0K to 2.0K  and 2.0K to 
3.0K. In the two electron Cooper pair in the temperature range 0K to 1.0K, the two-body interaction potential is 
denoted by  ܩ଴ and it is assumed to be constant. Similarly in the temperature range 1.0K to 2.0K in which there 
exists Cooper molecules of charge 4e. The interaction potential between two Cooper pairs that constitute the 
Cooper molecule is denoted by 01 2GG  . In the temperature range 2.0K to 3.0K, the Cooper molecule will be of 

charge 6e and the interaction potential will be denoted by 02 3GG   which is a constant. 

Now in the range 0K to 1.0K, kE  will be given by Eq. (26), i.e, 

      2
1

2 ko
)o(

k NGE            (31) 
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In the temperature range 1.0K to 2.0K we can write wring e.g (24), 

  2
1

21 22 okk
)(

k GNE          (32) 

    And the temperature range 2.0K to 3.0K, we get, 

 2
1

22 32 okk
)(

k GNE           (33)  

 
Using many-body thermal activation factor, the quasi particles energy dispersion formula can be written as;  

       T
E

)o(
ko

)o(
k

eEE 


     (Where is   Boltzmann constant)   (34) 

        T
E

koo

)o(
k

eNGE 


 2
1

2             (35) 

       T
E

okk
T

E
)(

ko

)(
k

)(
k

eGNeEE 






11

2
1

11 22          (36) 

     T
E

okk
T

E
)(

ko

)(
k

)(
k

eGNeEE 






22

2
1

22 32         (37) 

As a sample calculation, first Eq. (35) can be used to calculate specific heat  vC , and transition temperature  cT . 
For doing the calculations, we use the following values for different parameters: 

 Cooper pair interaction eVGo
310  for metals. 

 N = Number of cooper pairs  ≅  10଺ 
 k  = Energy level of cooper  pairs ≅ (10 − 70)ܸ݉݁ = (10 − 70) × 10ିଷܸ݁. Since we are dealing with a 

very low temperature superconducting state, the value of k  is chosen to be 10x10ିଷܸ݁ = 10ିଶܸ݁. 

 

 The specific heat  vC   is calculated by using equation (35) as; 

  T
E

o
k

o
v

o
k

e
T

E
T
EC 









 2

2 1         (38) 
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The transition temperature is calculated by writing, 

0









 cTT

v

T
C  

Which leads to cT as, 




2

o
k

c
ET            (39) 

Now the binding energy of a Cooper pair is the energy of the gap   that exists in the super- conducting state. For 
Al, ∆≅ 3.4 × 10ିସܸ݁. Thus, for Kagome metals, we can assume that eVGo

410 . The magnitude of the Quasi 

particle energy  k  is obtained by the Quasi particle map [20], and it turns out to be,

erg.eVeVeVk
12556 1061104104104040   . Thus we get; 

  erg.NGE ko
o
k

142
1

1031142          (40) 

Hence, to calculate the values of o
kE  for the involved parameters N, ܩை and k ; these parameters are as follows: 

 Interaction energy of the Cooper pair, ܩ଴ ≅ 10ିସܸ݁. 
 Number of Cooper pairs (N). In general, there may be 10଺ 10 ݋ݐ଻ electrons in between a Cooper pair such 

that electrons may form Cooper pairs with other electrons. There is no reason to believe that all these 
electrons may form Cooper pairs. Generally the number of electrons that form Cooper pairs are 10ିସ 
fraction [2]. Thus, N may vary between 10ଶ 10 ݋ݐଷ 

 Quasi particle energy eVeVk
6104040  . It could as well be 4 × 10ି଺ܸ݁[19,20]. Using these 

parameters, we have calculated the values of o
kE  for different values of ܩ଴ i.e; 

 
 

Table 1. Showing variation of o
kE  with oG  

410)eV(Go  1510)erg(E o
k  

0.1 0.451 

0.2 0.638 

0.25 0.714 

0.33 0.824 

1 1.428 
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Now these values of o
kE  can be used to calculate ܥ௏ from Eq. (38), and ஼ܶ  from Eq. (39). A sample calculation for 

vC  for o
kE = 1.428 × 10ିଵହ݁݃ݎ, ܽ݊݀ ܶ = gives K/J.Cv ܭ1.0

26106234  . Values of  vC can be calculated for 

using different values of oG , o
kE  in the temperature range T=1.0K to 3.0K. 

Of greater importance are the values of ஼ܶ for different values of ܩை and these we got from Eq. (39). 

 

Table 2. Showing variation of ஼ܶ with ܩை 

410)eV(Go  ஼ܶ (K) 

0.1 1.636 

0.2 2.31 

0.25 2.987 

0.33 2.987 

1 5.174 

 

 

5. RESULTS AND CONCLUSIONS 

Table 1 shows that Quasi particle energy increases as the interaction energy ܩை increases in the Cooper pairs and 
it should be so since stronger interaction leads to more energy in the system. 

The magnitude of specific heat turns out to be very small as it should be in the superconducting state. In the same 
view point the entropy will also be very small since these values must be very low at very low transition 
temperatures. 

Table 2 shows the variation of ஼ܶ with ܩை. It indicates that the values of  ஼ܶ increase as ܩை increases. Smaller ܩை 
value means weak interaction in the Cooper pairs and thus, to break the Cooper pair we need less energy which 
means smaller ஼ܶ value. Whereas for strong interaction (larger ܩை value), we need more energy to break the pair 
and hence ஼ܶ is large comparatively. These results are in line with the ஼ܶ values that one can obtain from the 

general expression for ஼ܶ which is  





53
02

.
Tc

 
[1,2]. 
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From Table 2 it is clear that for ஼ܶ in range 0K to 1.0K when the flux quantum periodicity is 
e

h
2

 ,the values of 

ை may lie between 10ିହܸ݁ ܽ݊݀ 10ି଺ܸ݁. In the range for ஼ܶܩ  between 1.0K and 2.0K, when the flux quantum 

periodicity is 
e

h
4

, the value of ܩை may be between 10ିହܸ݁  ܽ݊݀     0.2 × 10ିସ݁V. In the range for ஼ܶ between 2.0K 

and 3.0K when the flux quantum periodicity is
e

h
6

 the value of ܩை may be between  0.2 × 10ିସܸ݁ 10ି ݋ݐସ݁V . This 

is what has been observed in Kagome metals superconductors. Our calculations lead to the possible strength of 
interaction that may exist in the copper molecules, and this calls for experimental confirmation. 

Due to increase in the number of electrons in the Cooper molecules, we can try to study the effect of increased 
Coulomb interaction between the electrons on ܩை and ஼ܶ in future studies [21] 
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