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ABSTRACT

Superconductivity was observed in the Kagome metals cesium vanadium antimonide (CsVsSbs) or CVS at the
critical transition temperature 7. = 2.5K. But the resistivity of the CVS started decreasing even around 4K, and vanished at
1K. In general, for superconductors, the resistivity suddenly drops to zero at 7. In Kagome metals, such a gradual drop in
resistivity starting well above the bulk transition temperature (7.) was observed in thin superconducting compound
signifying existence of a fluctuating regime of superconductivity where Cooper pairs may be present in a disorganized form.
In general, charge-2e Cooper pairs should persist from 4K (pre-formation of Cooper pairs before 7¢) to 7. and below, and

should give rise to #_ (___ o > Quantized flux) resistance oscillations. Instead, the experimental observations led to the
2e 2e ?

existence of oscillations at the flux period of #_ between 2K and 3K; and of #_ between 1K and 2K; and the #_ period
6e 4e 2e

becoming dominant in the zero-resistance regime below 1K only.
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Thus, the periodicities % and # could emphatically mean that two  and/or three # Cooper pairs may
4e 6e 4e 6e

coalesce into Cooper molecules with Cooper molecules having a total charge of 4e and/or 6e.

Since a Cooper pair behaves effectively as a boson, these Cooper molecules can be treated as bosons, and a theory
is presented, which describes the condensed state of these bosons. An expression is obtained for the quasi-particle energy
in the condensed state, and this is used to calculate the specific heat (Cy), and the transition temperature (7¢). Charges of
Cooper molecules will determine the magnitudes and variation of C, and 7. with T.

Keywords: Kagome metals, Quantum Flux, Flux Periodicities, Cooper molecules, Condensed state.

1. INTRODUCTION

Superconductivity appears at some critical transition temperature 7. at which resistivity of the material
becomes zero. Very large currents, of the order of 10°A flow; two electrons combine to form pairs of electrons
called Cooper pairs, effectively doubling the charge of the electric charge carriers in the superconducting state
[1,2]. This is roughly the story of all types of superconductors; conventional and unconventional.

So far, the magnetic flux quantum @, = i =2.067x10"" Wb is the same for all types of superconductors, and

2e
the magnetic flux quantum is due to the motion of Cooper pairs that carry an electric charge of 2e. It is still not
exactly known as to what is the specific interaction between the charges in the Cooper pair, and how two similar
charges form a bound attractive system. As a rule, nature must have devised the same type of interaction between
charges constituting the Cooper pair for all types of superconductors. Thus, since ®@o is a universal constant being
composed of two universal constants, the interaction between the charges in the Cooper pair should also be a
universal constant since @ is a consequence of the motion of Cooper pairs.

We get flux quantization when a charged particle travels in a field-free region (E = 0, B = 0) that surrounds

another region in which there is trapped magnetic flux ®. Then, on completing a closed loop, the particle's wave
function will acquire an additional phase factor. But the wave function must be single-valued at any point in space.

Thus the motion of charges in the fields free region leads to non-dissipative persistent currents. In 1959,
Y. Aharonov and D. Bohm [3] theoretically predicted that a relative phase shift can exist even when the electron
beams pass only through spaces free of electric field (£) and magnetic field (B). It refers to the phenomena where
the wave function of the charged (particle) quantum particle acquires a phase due to the vector potential along its

path, leading to inference chances caused by the magnetic flux. If 0 is the phase, then a wave function e™” can
become ¢“"*%. It should be mentioned that persistent current is a non-dissipative equilibrium property for all
states below Fermi energy. In fact, persistent currents and consequence of Aharonov-Bohm [3] effect, and
according to its effect, which is a quantum mechanical phenomena, an electrically charged particle is affected by
an electromagnetic potential despite being confined to a region in which both the electric field (E) and the
magnetic field (B) are zero.

So far, a large number of conventional and unconventional superconductors have been studied both
experimentally and theoretically.
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To this, a very recent addition is the superconductivity of two-dimensional atomic layers of Kagome metal.
The structure of this two-dimensional Kagome crystal resembles a traditional Japanese basket weave called
Kagome [4, 5, 6, 7].

In fact, Kagome metals are a promising system of materials to explore when looking for interesting phases
of matter [9][10]. The quasi-two-dimensional Kagome materials such as KV3Sbs; RbV3Sbs; CsVbsSbs, are
important examples of Kagome superconductors. These present a new quantum platform to investigate the
correlation between electron correlations effects, topology and geometric frustration [10]. The superconducting
properties of Kagome metals, especially the important pairing symmetries and the interplay between
superconductivity and the charge density wave state, have been reviewed and studied experimentally and
theoretically. It is found that each Kagome metal in this family of materials has different critical parameters.

For instance, for CsVbsSbs, the critical magnetic field H, =0.4T (T’ = Tesla) which is quite small; the
zero-field (HL, = 0) resistivity P(7) variation leads to the superconducting (SC) ground state at 7. = 2.3K. The

measurements showed well-defined Meissner effect and the specific heat showed sharp entropy anomaly at the
superconducting transition (SC-7). It is found that the resistivity P(7T) of = K V3Sbs drops to zero at 7c = 0.93K ;
and for RbV3Shs, P(T)— 0 at Tc = 0.75K . Thus, this family of materials are superconducting at quite low

transition temperatures [10].

Recently, it is found that a superconductivity theory proposed by Wuzburg physics team has been
validated in a universal experiment that showed that the Cooper pairs display wave-like distortions within the
sublattices in Kagome metals [11]. In fact, the unique crystal geometry of Kagome metals combines in it unique
distinctive properties such as electronic, magnetic, and superconducting.

In a recent experiment on Kagome metals, it is found that when the Kagome metals are in the
superconducting state, an exotic metal harbours charge carriers which appear to have 4 and 6 times the charge of
a single electron, suggesting the formation of Cooper pair molecules [9]. The bulk CVS has a transition
temperature 7. = 2.5K , and its resistivity P(7) starts decreasing at about 4.0K, and vanished at about /K. For a
thin superconducting compound, such a drop in resistivity, spread over a temperature gap, and well above the
transition temperature is very much expected. This marks a fluctuating regime of superconductivity in which
Cooper pairs are present in a disorganized fashion.

It should be a general understanding that charge- 2e Cooper pairs should persist up to 4K, and the

resistance oscillation should be 5 ¢, . Instead, the experimental observations showed evidence of resistance
e

oscillations at the first period4i between /K and 2K; and flux period of6i between 2K and 3K, with the 2£
e e e

period becoming dominant in the zero-resistance regime only below /K.
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This means in different temperature ranges, and in the superconducting state, Cooper pairs with charge
2e and combinations of Cooper pairs with charge 4e and 6e could carry the superconducting current; and this

T ... h h S .
implies that the per10d1c1tles4— and . confirm the possibility that two, and or three Cooper pairs, somehow
e e

coalesce into Cooper molecules, with a total charge 4e and/or 6e. A flux periodicity 0f2— was experimentally
e

observed long ago [8].

Obviously, observation of new periodicities, e and > point to the existence of some new type of exotic
e e

interaction between electrons in the Cooper pairs and Cooper molecules. The question is as to what do the Cooper
pairs look like as they orbit around each other in Cooper molecules. Thus, composite quasi-particles could lead
to the understanding of superconductivity in Kagome metals. We have now to decide how to write the
Hamiltonian of the system in which Cooper pairs and Cooper molecules may exist simultaneously, and the
superconducting state is spread over a range of temperatures such that the Cooper pairs and Cooper molecules
play a dominant role over a range of temperatures. Since the Cooper pairs and molecules are composed of an even
number of fermions, they can be effectively treated as bosons. The theory of second quantization and the
Bogoliubov theory for interacting bosons leading to superfluidity can be used to obtain the quasi-particle energy
(Ex) for such an assembly; and then obtain the expressions for specific heat (C,) and transition temperature (7¢)
[12, 13] [14] [15-18].

2. THEORETICAL DERIVATIONS

The superconducting state in Kagome metal superconductors seems to be composed of two-electron pairs
and 4-electron and 6-electron Cooper molecules [7]. Recent experimental observations led to the existence of

oscillations at a flux period 0f6i between 2K and 3K and of 4£ between /K and 2K, the ziperiod becoming
e e e

dominant in the zero resistance regime below /K only. Hence, the periodicities 4£ and6£ could emphatically

e e
mean that the two (2x2e) and/or three (3%2e) Cooper pairs may coalesce into Cooper molecules with Cooper
molecules having a total charge of 4e and or 6e. A Cooper pair, being composed of two fermions, can behave as
an effective boson, and similarly, the Cooper molecules can behave as bosons. Thus, at very low temperatures in
the range 0K to 3K, the superconducting state can be described as the condensed state of free bosons that can flow
without dissipation, leading to very large superconducting currents. Although in the different temperature ranges,
the composition of the charge carriers differs, but all of them behave as effective bosons. Consequently, the theory
of second quantization is used to write down the Hamiltonian (H) of the system of bosons, and the Bogoliubov
canonical transformation is used to diagonalize the Hamiltonian (H) to obtain the quasi-particle energy of the
system.
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3. IAGONILIZATION OF THE HAMILTONIAN FOR A SYSTEM OF INTERACTING
PARTICLES USING THEORY OF SECOND QUANTIZATION

The principle of second quantization are used to write down the Hamiltonian (H) of a system of iteracting
particles. The Hamiltonian is composed of the kinetic energy and potential energy. It is assumed that the potential
energy is due to pairing interaction between the particle and the three or more particle interactions are neglected
assuming that they are very small when compared to the pair interaction. Such an assembly of particles is said to

be weakly interacting. There are two types of particles, fermions with spin 1, and bosons with integer spins (0,
2

1, 2, ...). Hamiltonians for both the systems can be written and diagonalized.

For a weakly interacting assembly of bossons, the Hamiltonian is written as,

H = Kinetic energy + Potential energy
H= Zek a.a, +— ZGk kaklakza (1)

Here, a; and a, are the creation and annihilation operators that satisfy the usual commutation relations for

bosons. In the second term of Eq.(1), momentum conservation is assumed when the sum is carried out over all

values of momenta k,,k,,k,,k, such that,
k +k, =k +k) )

In the interaction process (second term of Eq. (1)) leading to scattering, it is clear that a particle with momentum

k, is destroyed (a,;1 ) and it goes to reappear as a particle with momentum £, (a,:1 )such that the momentum transfer
is k, —k, . Similarly, the particle with momentum k, is destroyed (ak,) and reappears as a particle with
2

momentum £, (a,j2 ), such that the momentum transfer to this second particle is k, —k,. For the conservation of

momentum of these two particles, the momentum transfer to both the particles must be equal in magnitude but
opposite in sign, i.e.,

k —k =—{k,— k) )=k, +K,
Or  k +k,=k +k,

The G in Eq. (1) represents the interaction between the particle with momentum &, and the particle with

momentumk, and is given by Eq. (3), where G]f' ;2 is the Fourier transform of G

GZI:; :”‘V; (’ﬁ)‘V:z (rz)G(’ﬁl’rz)*Vkl' (”1)‘4’;{; (rz) 3)
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where s are the wave functions associated with the particles, and G(r;,r,) represents the form of two-body

interaction between a pair of particles, and also,
G, =G, 4)

which asserts the in-variance of the two-body interaction G under time reversal. If there is no interaction between
the particles, then G = 0 ; the ground state will be £k = 0, and hence all the particles will be in the state k = 0, and
this state is called condensed state or zero-momentum state (ZMS).

The total number of particles, N, can be distributed among the excited states with £ # 0, and the condensed state
k = 0, and hence one can write:

N=NO+Za;ak (5)

k#0
where N,= number of particles in the state £ = 0.

The Hamiltonian H is diagonalized by using the Bogoliubov canonical transformation to obtain stationary
states or to yield a system of non-interacting quasi-particles whose energy spectrum depends on the coefficients
of the Bogoliubov canonical transformation, also called the Bogoliubov-Valatin transformation. It should be
understood that the Bogoliubov-de Gennes Hamiltonian is a mean-field Hamiltonian (mean-field means that the
particles move in an average potential created by the interactions between all the particles. It is treated as aconstant
potential, say, V5), i.e, a one-body quadratic Hamiltonian in which the Hamiltonian is composed of the products

of creation operators (a*) and annihilation operators (a) [15-18].

Now, to diagonalize the Hamiltonian /' using the Bogoliubov canonical transformations, new operators (oco) are
introduced and they connect with the old operators (a) via the transformation constants u, and v, which are

real constants. i.e, u_, =u, and v_, =v, .1.e, We write:

O =y =Vl (6)
With the condition that ,

u; —v; =1 (7)

Here (o, 's) satisfy the same commutation laws as the (a, ), and these laws are for bosons since when two

fermions (electron-electron or electron-hole) combine, they effectively behave as bosons. The Hermitian
conjugate of Eq. (6) can be solved to give:

a, =u, 0 + v, (8)
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Commutation laws for boson operators are:

[ak:a;]=aka1: —aya, =1
[ak’ak]:[alj’alj]zo )

+ f—
[ak’ a, ]— Sklkz

Using the values of (ak) and (ak*) from Eq. (8) and the commutation laws in Eq. (9), the Hamiltonian A can be

written as:
H=u+H, +H, (10)
Where:
’ :% NG, +Y [, +NG, W2 + NG, ] (11)
k#0
H, = Z[(ek +NG, \u; +v; )+ 2NGkukvk}xZOLk (12)
k#0
1 2, .2 + o+
H, = [(ek +NG, Ju,v, +§NGk(uk +v; )}(aka_k +0Lk0L_k) (13)
k#0

In writing the values of H, terms of higher orders in N, have been dropped since they give corrections of higher

order in G which is assumed to be small parameter.

It is evident that /7 will get diagonalized if we arrange things such that /7, =0 . The Hamiltonian / then becomes,

H=u+) Eojo, (14)
k

And this Hamiltonian describes a set of independent quasi-particles of energy E, , such that:
E, =(&, +NG, Yu} +v} )+ 2NGu,v, (15)
The condition for vanishing of 4,, gives:
2e, +NG, v, + NG, (u? +v7)=0 (16)

Eqgs. (7) and (16) are to be solved simultaneously for #, and v, to get the dispersion formula for E, .
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We now let:
. : 2 2
u, =coshx and v, =sinhx,since u; —v, =1;

2u,v, =sinh2x

2 2
u; +v, =cosh2x

cosh xzi and | sinh xzi
2 2

Thus from Eq. (16), we get:

NG,

tanhx = ——X—
€, +NG,

And from Eq. (20), we can write:

sinh2x=— NG, 1
[(ek +NG, )2 _NszzF
cosh2x =— (e" +NG")

[(ek +NG, )2 - NZGEF

(17)
(18)

(19)

(20)

21

(22)

Substituting Eqgs. (21) and (22) into (18) and (19) give the values ofu, v, and u,f + v]f , and substituting these in Eq.

(16) gives the dispersion formula for E, as:
1
E = [(ek +NGk)2 —NZG;F

E, =[ei +2N €, Gkﬁ

(23)

24)

Now in the limit £ — oo, in Eq. (23), the second term goes to zero much faster than the first term, and hence:

Ek m—)(ek +NGk)

(25)
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And in the limit £ — 0, in Eq. (24), the first term goes to zero faster than the second term, and hence:
1
E,———(2NG, €, ) (26)
It is to be understood that the non-singular two-body potential goes to zero ask — o ; i.e.,
Limk — ©,G, =0 (27)

Now, to bring in the temperature dependence for the energy excitation formula, we multiply £, by the many-
Ex
body thermal activation factor: £ = E,e *" (here « isthe Boltzmann constant) and finally write the quasi-particle

energy dispersion formula as E, that is,

B

E=Ee ¥ (28)

The specific heat C, is written as:

OE
C =l— 29
() -
The transition temperature 7, is obtained as:
{acv } =0 (30)
orT 1,

4. CALCULATIONS

Recent experimental observations [7] show that the superconducting state in the Kagome metals super
conductors have different types of Cooper pairs in the temperature ranges 0K to 1.0K , 1.0K to 2.0K and 2.0K to
3.0K. In the two electron Cooper pair in the temperature range 0K to 1.0K, the two-body interaction potential is
denoted by G, and it is assumed to be constant. Similarly in the temperature range 1.0K to 2.0K in which there
exists Cooper molecules of charge 4e. The interaction potential between two Cooper pairs that constitute the
Cooper molecule is denoted by G, = 2G, . In the temperature range 2.0K to 3.0K, the Cooper molecule will be of

charge 6e and the interaction potential will be denoted by G, = 3G, which is a constant.

Now in the range 0K to 1.0K, E, will be given by Eq. (26), i.e,

@“:QNngﬁ (31)
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In the temperature range 1.0K to 2.0K we can write wring e.g (24),

1

E{" =(€ +2N ¢, x2G, 2 (32)

And the temperature range 2.0K to 3.0K, we get,

1
E? =(& +2N ¢, x3G, } (33)

Using many-body thermal activation factor, the quasi particles energy dispersion formula can be written as;

E)
E =E(e *T (Where is k Boltzmann constant) (34)
T
E, =(2NG, g, )ze T (33)
e o
E,=EVe s =(e 42N e, x2G, fe * (36)
E, =E(’e 5 =(e] +2N e, x3G, e (37)

As a sample calculation, first Eq. (35) can be used to calculate specific heat (Cv), and transition temperature (7).

For doing the calculations, we use the following values for different parameters:

e Cooper pair interaction G, =10 eV for metals.

e N =Number of cooper pairs = 10°
e ¢, = Energy level of cooper pairs = (10 — 70)meV = (10 — 70) x 10~ 3eV. Since we are dealing with a

very low temperature superconducting state, the value of €, is chosen to be 10x1073eV = 10~%eV.

The specific heat (CV) is calculated by using equation (35) as;

OE, (.,p 1 A
C="r=(E) —ze (38)

-10-



The transition temperature is calculated by writing,

Which leads to 7, as,

T=E1?
<2k

(acv] 0
oT Jr_r
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(39)

Now the binding energy of a Cooper pair is the energy of the gap A that exists in the super- conducting state. For
Al, A= 3.4 x 10™*eV. Thus, for Kagome metals, we can assume that G, =10 ‘el . The magnitude of the Quasi

particle energy (ek) is obtained by the Quasi particle map [20], and it turns out to be,

€,=40pelV =40x10%eV =4x107 eV =4x107 x1.6x10 " erg . Thus we get;

1
E =(2NG, €, )2 =14.31x10 " erg

(40)

Hence, to calculate the values of E} for the involved parameters N, G, and €, ; these parameters are as follows:

e Interaction energy of the Cooper pair, G, = 10~ *eV.
e Number of Cooper pairs (N). In general, there may be 10° to 107 electrons in between a Cooper pair such
that electrons may form Cooper pairs with other electrons. There is no reason to believe that all these
electrons may form Cooper pairs. Generally the number of electrons that form Cooper pairs are 10~*
fraction [2]. Thus, N may vary between 102 to 103
e Quasi particle energy €,=40ueV =40x10°eV . It could as well be 4 x 107%eV[19,20]. Using these

parameters, we have calculated the values of E; for different values of G, 1.¢e;

Table 1. Showing variation of E] withG,

G, (eV )x10™

E/(erg)x107"

0.1

0.2

0.25

0.33

0.451
0.638
0.714
0.824

1.428

-11-
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Now these values of £/ can be used to calculate C, from Eq. (38), and T, from Eq. (39). A sample calculation for
C, forEy=1.428 x 10"*erg,and T = 1.0K gives C, =4.623x107°J /K . Values of C,can be calculated for
using different values of G, E} in the temperature range 7=1.0K to 3.0K.

Of greater importance are the values of T, for different values of G, and these we got from Eq. (39).

Table 2. Showing variation of T, with G,

G, (eV)x10* | Tc (K)

0.1 1.636
0.2 231
0.25 2.987
0.33 2.987
1 5.174

5. RESULTS AND CONCLUSIONS

Table 1 shows that Quasi particle energy increases as the interaction energy G, increases in the Cooper pairs and
it should be so since stronger interaction leads to more energy in the system.

The magnitude of specific heat turns out to be very small as it should be in the superconducting state. In the same
view point the entropy will also be very small since these values must be very low at very low transition
temperatures.

Table 2 shows the variation of T with G, . It indicates that the values of T, increase as G, increases. Smaller G

value means weak interaction in the Cooper pairs and thus, to break the Cooper pair we need less energy which

means smaller T value. Whereas for strong interaction (larger G, value), we need more energy to break the pair

and hence T, is large comparatively. These results are in line with the T, values that one can obtain from the
2A(0)

general expression for T which is 7, = Y™ [1,2].
Sk

-12 -
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From Table 2 it is clear that for T, in range 0K to 1.0K when the flux quantum periodicity is 2£ ,the values of
e

Go may lie between 107°eV and 10~ %eV. In the range for T, between 1.0K and 2.0K, when the flux quantum

periodicity is 4i , the value of G, may be between 10™%eV and 0.2 X 10~*eV. In the range for T, between 2.0K

e

and 3.0K when the flux quantum periodicity is 6i the value of G, may be between 0.2 X 10™*eV to 10~ *eV . This

e

is what has been observed in Kagome metals superconductors. Our calculations lead to the possible strength of
interaction that may exist in the copper molecules, and this calls for experimental confirmation.

Due to increase in the number of electrons in the Cooper molecules, we can try to study the effect of increased
Coulomb interaction between the electrons on G, and T, in future studies [21]
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