Available online at www.worldscientificnews.com

World Scientific News

An International Scientific Journal

WSN 199 (2025) 142-155 EISSN 2392-2192

Balancing Accuracy and Interpretability: GradientSHAP for

Enhanced Energy Demand Predictions

Wisdom Chima Olumba'?*, Happy Nkanta Monday?3, Grace Ugochi Nneji%3, Daniel Agbonifo?4,
Godwin Mark David?5, Edwin Sunday Umana?5, Gladys Chinyere Olumba?’, Richard

Iherorochi Nneji%8

'Department of Electrical Engineering, Reliable Steel and Plastics Industry, Anambra, Nigeria
2Intelligent Computing Lab, Hace SoftTech, Lagos, Nigeria
30BU Computing, Chengdu University of Technology, China
4Department of Exploration, Neconde Energy Limited
5Business Administration and Management, University of Cross River State, Nigeria
6Department of Mathematical Science, Federal University of Technology Akure, Ondo, Nigeria
"Department of Agricultural and Natural Resources, Abia State Local Government, Abia, Nigeria

8Department of Engineering, Ikelinsco Global Company, Nigeria

*Author for Correspondence: olumbaw@gmail.com

(Received 10 November 2024; Accepted 20 December 2024; Date of Publication 10 January 2025)

-142 -



World Scientific News 199 (2025) 143-155

ABSTRACT

The growing amalgamation of renewable sources of energy in power systems has increased the need for accurate
energy demand prediction within smart grids. Recent progress in machine learning has improved predictive capabilities;
however, most of these models are complex in structure and lack interpretability. This study proposes a novel GradientSHAP
which fuses gradient boosting algorithms with SHAP (SHapley Additive exPlanations) values to enhance predictive
performance while improving model interpretability. GradientSHAP is developed to capture complex ad non-linear
structure in the time-series and weather data for a robust energy demand predictions. SHAP values are computed together
with the boosting algorithm to provide meaningful information into the impact of the individual features on the model
predictions. The European energy demand dataset is utilized in this study to evaluate the proposed GradientSHAP, and the
model performance is compared with traditional models such as linear regression and support vector regression (SVR).
GradientSHAP outweighs these traditional models, obtaining the lowest training and test Mean Squared Error (MSE) and
the highest R-squared (R?) score, demonstrating optimal predictive capability. Detailed and concise explanation of feature
contributions is presented via SHAP plots to enhance model transparency. The proposed GradientSHAP achieves a
significant milestone in energy demand prediction and demonstrates a substantial ability to balance high predictive accuracy
and interpretability without a trade-off, which is essential in predicting energy demand in smart grids.

Keyword: GradientSHAP, Machine Learning, Energy Demand, Smart Grid, Time-series.

1. INTRODUCTION

Precise and accurate prediction of energy demand is paramount for optimizing resource allocation, sustaining
grid stability, and planning energy production within smart grids [1]. Solar and wind are the two renewable
sources of energy integrated into the electricity system generation, leading to a hike in the variability and
complexity of energy demand, necessitating reliable and automatic predictive models [2]. Traditional approaches
often lack the capacity to capture intricate dependencies and convoluted temporal interactions necessary for
energy demand prediction [3]. Current innovations have demonstrated that leveraging ML algorithms enhance
predictive capabilities by capturing complex representations in large datasets [4]. However, the major
disadvantages are model complexity and limited interpretability. To mitigate these drawbacks, we propose a novel
approach called GradientSHAP, a lightweight model for enhancing predictive accuracy and providing
interpretability. The goal of GradientSHAP is to provide transparent interactions between features for the
prediction of energy demand, ultimately helping practitioners to understand how various constituents impact
energy demand. The following are the main contributions of this research:

e This paper introduces the GradientSHAP model, which combines Gradient Boosting and SHAP values to
forecast energy demand with enhanced accuracy and interpretability.

e Explainable Al is incorporated to provide meaningful details into the feature interactions.

e This research offers concise evaluation of other ML algorithms on energy demand prediction and
compares the performance of the proposed GradientSHAP with other models.

e Analyzes the time-series feature selection and imputation techniques critical to enhancing the model
performance.
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e Utilization of SHAP techniques to enhance model interpretability, offering precise understanding of how
individual features impact and contributes to the predictions.

The subsequent parts of this study are organized as follows; section 2 provides a detailed literature review of
related approaches in energy demand prediction. The proposed methodology is explained in section 3 which
details the data gathering process, feature selection, and concise explanation of the proposed GradientSHAP. It
also explains the data preprocessing steps and model selection criteria. Section 4 presents the performance
analysis of the models, discusses the significance of each evaluation metric, and provides visualizations such as
residual distributions and violin plots to assess model performance. Section 5 concludes the key findings and
advantages of the GradientSHAP model and provides recommendations for its implementation in real-world
energy forecasting scenarios. Finally, the paper outlines the limitations of the current study and proposes
directions for future research to enhance energy demand forecasting using GradientSHAP in section 6.

2. RELATED WORK

Recent advancements in machine learning (ML) have significantly contributed to the accuracy and
reliability of energy demand forecasting within smart grids. This section summarizes prior literature on energy
demand forecasting. Recent advancements in solar irradiance and power forecasting have utilized a range of
methodologies. Zambrano and Giraldo [1] proposed forecasting models that do not rely on on-site measurements,
offering an advantage for remote areas; however, their accuracy depends on the availability of comprehensive
weather data. Sobri et al. [2] conducted an extensive review of solar photovoltaic (PV) forecasting methods,
concluding that machine learning (ML) techniques significantly improve forecast accuracy but are often complex
and computationally demanding. Voyant et al. [3] evaluated various ML approaches for solar radiation prediction
and spotted their high prediction accuracy; however, data limitation for training data was a setback. Agiiera-Pérez
et al. [4] analyzed weather prediction for micro-grid maintenance, pointing that weather predictions enhances
energy distribution but fast-changing weather conditions posed a drawback. Qazi et al. [5] reviewed the efficacy
of neural networks for solar prediction, disclosing the need for optimal data quality. Antonanzas et al. [6]
investigated the use of ML for photovoltaic (PV) electricity prediction and reported the advantages of ML
approach, although, requires thoughtful model selection. Das et al. [7] concentrated on model optimization to
enhance predictive accuracy for PV electricity generation and demand.

Yadav and Chandel [8] explored the utilization of neural network techniques in solar prediction,
demonstrating satisfactory outcome, with drawbacks in extreme hyperparameter tuning. Ozge and Ummiihan [9]
investigated solar radiation and electricity prediction strategies and reported difficulties associated with obtaining
reliable prediction under changing weather conditions. Zendehboudi et al. [10] implemented support vector
machine models to predict solar and wind energy, obtaining optimal accuracy but encountered difficulty in
generalizing across various geographic settings. Notably, Huang et al. [11] and Lorenz et al. [12] integrated
multiple algorithms and remote sensing information to predict hourly energy demand, however, handling dynamic
weather variations was a challenge. In recent development in photovoltaic (PV) electricity output prediction, Raza
et al. [13] highlighted major advancement in prediction approaches using ML algorithms and weather datasets.
However, adaptability of these models to the changing weather conditions was a drawback. Huang et al. [14]
proposed an automated model using weather-based prediction for one-day-ahead hourly forecast of PV electricity
generation, establishing enhanced prediction accuracy.
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Nevertheless, the model faced limitations with computational intensive when handling large-scale
datasets. Rozas Larraondo et al. [15] built a circular regression tree-based model for airport weather forecasting,
which effectively captured cyclical data sequence. Irrespective of the enhanced performance obtained, scalability
for larger geographical areas were a challenge. Qing and Niu [16] proposed a novel strategy for predicting solar
irradiance based on hourly day-ahead and weather forecasts utilizing Long Short-Term Memory (LSTM) model.
Their approach outweighed traditional machine learning algorithms in temporal pattern learning, but requires
extensive computational resources.

Akarslan and Hocaoglu [17] put forward a similarity-based approach to forecast hourly solar irradiance.
However, the accuracy of the model dropped for prolong forecasting periods. Gigoni et al. [ 18] proposed a method
to enhance the accuracy and reliability of forecasting PV electricity generation based on 24 hours-ahead, but faced
with the limitations of testing the model in real-world varying PV plant settings. In another study, Semero et al.
[19] investigated a fusion approach of Genetic Algorithm, Particle Swarm Optimization for PV electricity
forecasting. This fusion strategy enhanced prediction performance, however, the model complexity resulted in
extensive computational. Zhang et al. [20] explored 24 hours-ahead power output prediction for small-scale solar
PV power generation. The study revealed the drawbacks associated with varying solar generation and investigated
a forecasting strategy that mitigates prediction errors; however, further research was necessary to adapt the
approach to a broader context of PV equipment.

3. METHODOLOGY

This section presents the different approaches employed to achieve optimal energy demand prediction.
These approaches are data gathering, preprocessing time-series and weather data, selecting meaningful feature
representations, model training, and evaluating.

3.1. Data Collection

The dataset utilized in this study is sourced from the open power system data (OPSD) platform of
European power systems, containing time-series load and weather data. The time-series load dataset contains
hourly electricity load information, including actual power consumption and predicted load across various
European regions, spanning over years, which is essential for comprehending demand sequence and predicting
future electricity consumption. The data includes time-stamped load information, which is essential for
constructing time-dependent sequence and seasonal variations in electricity consumption. It also consists of other
variables such as electricity prices, generation from renewable sources (solar and wind), and other important time-
based characteristics.

The weather data comprises hourly meteorological elements such as temperature, wind speed, and solar
radiation. The interactions of weather elements with the time-series variables ensure concrete assessment of
weather impacts on power generation and usage. Both datasets comprise of timestamps as overlapping features,
which is ideal constructing and training predictive models that leverage the sequential pattern of electricity usage
and weather change over time.

- 145 -



World Scientific News 199 (2025) 146-155

B
A
— Residuals Distribution - Linear Regression Residuals Distribution - Support Vector Regressor
400
1000 350
300
800
250
» 2
g 6001 g 200
4001 150 1
100 1
200 1
50 1
-0.05 0.00 0.05 0.10 0.15 ’ y 0.00 0.05 015
Residuals Residuals
C R .
Residual Distribution - GradientSHAP
700 A
600
500 4
> 400 A
o
3
g
& 300
200 4
100 A
0
-0.06 X i 0.00 X X 0.06
Residuals
Figure 1A-C. Residual distribution of the different models.
3.2. DATA PREPROCESSING

This study adopted several vital processes to ensure that the data is denoised, consistent, and compactable
for training the proposed model. First, the datasets consisting of both the time-series and weather were loaded
into the environment using necessary libraries, and an initial validation is conducted to comprehend the data
structure, pattern of the columns, data types, and perpetual problem associated with null values.
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Essential variables such as electricity demand and weather indicators with missing elements were imputed
utilizing forward-filling and interpolation to preserve continuity in the time-series data without including bias.
The timestamp columns were changed to date-time element to necessitate time-based process, ensuring
consistency in data.

Each respective timestamps for time-series and weather data are merged to maintain matching correspondence
for each hourly input and ensure both cover the same periods. To capture temporal features pattern in electricity
consumption, we extracted elements such as hour, day of the week, months, and season from the timestamp. We
generated lag feature such as electricity demand in previous hours to obtain temporal dependency to help the
model comprehend patterns over time. More so, we normalize the numerical features to ensure uniform range for
all features to help enhance the model convergence in the training phase. Finally, we split the preprocessed dataset
into training and test sets, maintain temporal pattern essential for training the proposed model.

3.3. Model Selection

This research evaluates a diverse range of ML model in comparison to the proposed model for predicting
energy demand. Initially, linear regression is employed as a baseline model, known for its simplicity and
interpretability, where the relationship between features and the target variable is assumed to be linear. Support
Vector Regression (SVR) is then utilized, which operates by mapping data to a higher-dimensional space to
capture non-linear patterns, while aiming to minimize error within a defined margin. However, SVR may require
significant tuning of hyperparameters to achieve optimal performance. GradientSHAP is included as a boosting
algorithm, which sequentially builds models to correct errors made by preceding models, effectively reducing
bias and variance. The selection of these models aims to capture both linear and complex non-linear relationships
within the data. The final decision on the best model is based on the evaluation metrics like Mean Squared Error
(MSE), R? Score, and additional metrics from visualizations, which help determine which algorithm generalizes
best to unseen data while maintaining computational efficiency.
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Figure 2A-C. Model performance evaluation plots for the different models.

3.4. Model Training and Evaluation

The model training and evaluation process involves several key steps to ensure that the machine learning
algorithms learn effectively from the data and are evaluated accurately. The training phase begins with
preprocessing the data, where missing values are handled using imputation techniques, and features are
normalized and scaled. The imputed and preprocessed training data is then split into training features and target
variable. The models are trained on training features using supervised learning algorithms where the goal is to
minimize the error between the predicted output and the actual target values in the target variable. During training,
the linear regression algorithm fit a model in equation 1.

(I  y=Xp+e

Where y is the predicted value (target variable) and X is the training feature, 8 is the coefficient vector,
and € is the error term. The model tries to find the best value of S that minimizes the residual sum of squares
(RSS) whereas algorithms such as support vector regression (SVR), try to find a function that maximizes the
margin while keeping prediction errors within a defined range as presented in equation 2. GradientSHAP employ
iterative techniques to build ensemble models where each new model corrects the errors of previous ones by
minimizing a loss function, often the Mean Squared Error (MSE), which reduces both bias and variance to

improve model generalization as given in equation 2.

2 f)=wliX+b
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Where wT denotes the weight transpose vector and b is the bias term. The goal is to minimize the regularized
hinge loss function.

1 Py
3) MSE ==X, (v — 9)*
Where y; denotes the true target values, y,is the predicted values, and n is the number of observations.

After model training, the performance is evaluated using both the training and testing data as presented in equation
3. R? score is a measure of the proportion of variance in the dependent element that is predictable from the
independent element.

i i-9)?
RZ =1 —&i=1st 1
?:1(yi_37)2

4

Where Y™, (y; — %,)?is the sum of squared residuals, .1, (y; — ¥)?is the total sum of square while ¥ is the mean
of the actual values. R? values range from 0 to 1, where a higher value indicates a better fit of the model. In this
context, R? shows how much of the variance in mechanical properties can be explained by the model's features,
thus providing a sense of how well the model generalizes to unseen data.

(5)  MAE ==37,ly; - ;]

It is worth mentioning that the model with lowest MSE/RMSE and highest R? is the top-performing model.
Further fine-tuning of hyperparameter is applied to the top-performing model to enhance predictive performance.

4. RESULT AND DISCUSSION

The predictive capability of the proposed GradientSHAP in comparison to other ML models is analyzed
and discussed in this section. The residual distribution plots for the traditional models in comparison with the
proposed GradientSHAP are shown in Figure 1 providing insights into the differences between the actual and
predicted variables. A closely and narrow distribution of features around zero, as seen in Figure 1C, demonstrates
the predictive ability of the proposed GradientSHAP, indicating satisfactory model accuracy and less prediction
error. The LR plot also shows a relatively narrow distribution, showing acceptable predictive performance.
However, the SVR plot displays a sparse distribution, indicating larger errors and reduced predictive accuracy
compared to the proposed model. Table 1 shows the statistical analysis of the results obtained by all the models.
The LR model achieved a strong predictive performance with a low training MSE of 0.0002 and a test MSE of
0.0006, indicating that the model generalizes well from training to test data. The high R? score of 0.9688 implies
that the model captures 96.88% of the variance in the target variable. The MAE of 0.0205 and RMSE of 0.0241
confirm that the predictions are close to actual values, suggesting that linear regression is an efficient baseline
model for this prediction. Another ML model adopted in this study is the SVR, on the other hand, performs
adequately but with a noticeable reduction in accuracy compared to linear regression. It achieved a training MSE
0f 0.0018 and a test MSE of 0.0020, indicating some overfitting.
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Figure 3A-C. Violin plots for the of GradientSHAP model.

The R? score of 0.8910 suggests that 89.10% of the variance is captured, which is lower than linear
regression. This reduction in performance may be due to the SVR's kernel-based approach, which struggles with
the complexity and high dimensionality of the data. The MAE of 0.0369 and RMSE 0.0451 achieved by the SVR
indicate larger prediction errors. The GradientSHAP outperformed both linear regression and support vector
regressor models, with an exceptionally low training and test MSE of 0.0002, suggesting minimal overfitting.
The R? score of 0.9899 demonstrates that the model captures nearly 99% of the variance, making it the most
accurate model in analysis.
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The ability of gradient boosting to learn complex patterns in the data through an ensemble of weak learners
allows it to achieve superior results, outperforming LR and SVR in accuracy and generalization. Overall, gradient
boosting emerges as the best-performing model, with linear regression providing a strong baseline and SVR
showing moderate effectiveness but higher error rates.

Figure 2 illustrates the errors (residuals) between the actual and predicted values for each model. The residuals
for the linear regression model are centered on zero and normally distributed, indicating a strong fit. The SVR
displays a wider spread in its residuals, suggesting higher prediction errors, while the GradientSHAP has a
residual distribution tightly clustered around zero, signifying minimal error and a better prediction performance.
Overall, the residual distribution plots highlight the GradientSHAP's superior accuracy over the other two models
due to its smaller and more centered residuals.

Table 1. Result comparison of GradientSHAP with different machine learning models.

Model Train Test R? Mean Absolute | Root Mean Squared
MSE MSE Score Error (MAE) Error (RMSE)

Linear 0.0002 0.0006 0.9688 0.0205 0.0241

Regression

Support

Vector

Regressor 0.0018 0.002 0.891 0.0369 0.0451

(SVR)

GradientSHAP | 0.0002 0.0002 0.9899 0.0107 0.0138

The violin plots presented in Figure 3 provides insights into the distribution of the features with respect to
the target variable. In the first plot for ‘AT load forecast entsoe transparency,’ the feature demonstrates a range
of spread across the target values, suggesting a strong relationship and variability. The second plot,
‘AT price day ahead,” shows a somewhat stable distribution with less variation, indicating a potential weak or
stable relationship with the target. Finally, the ‘AT solar generation_actual’ plot indicates a wider spread in the
middle, implying that solar generation might have varied influence on the target at different levels. These plots
help understand the impact and spread of individual features on the target.

The SHAP force plot visualizes how features impact the model's prediction as presented in Figure 4. The
plot begins from the base value (0.632), with each feature either pushing the prediction higher (in red) or lower
(in blue). The "AT price day ahead" with a value of 62.0 slightly increases the prediction, while
"AT load forecast entsoe transparency" with a value of 5511.0 significantly decreases it, resulting in an overall
lower prediction. The length of the bars indicates the magnitude of the impact, providing insights into which
features drive the model's prediction and how they influence the final output.
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Figure 4. SHAP force plot explainability of GradientSHAP for the top features.

The SHAP waterfall plot in Figure 5 shows how each feature contributes to shifting the model's base value
to reach the final prediction. Features such as ‘SE radiation direct horizontal’ and “AT load forecast entsoe
transparency” decrease the model's output, while ‘GB_NIR load forecast entsoe transparency’ slightly
increases it. Blue bars indicate features lowering the prediction, and red bars indicate those increasing it. The plot
highlights the significant impact of each feature, indicating that ‘SE _radiation_direct horizontal’ has the strongest
effect in reducing the prediction. In summary, the SHAP plot offers interpretability into the top features that
influences the predictive output of the model.
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Figure 5. SHAP waterfall plot explainability of GradientSHAP for the top features.

5. CONCLUSIONS

This study proposes GradientSHAP, a methodology that combines gradient boosting with SHAP values
to enhance both prediction accuracy and interpretability in electricity demand prediction. The GradientSHAP
model captures complex sequence within time-series and weather data, offering a robust prediction mechanism,
while the SHAP values provide intuition into the model decision-making process by emphasizing feature
importance and contributions, thereby making GradientSHAP a transparent and alternative solution for energy
demand prediction. Compared to LR and SVR, GradientSHAP obtained superior predictive accuracy and provides
an explainable model structure for both accuracy and interpretability, while demonstrating its effectiveness in
addressing challenges in predicting energy demand.
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GradientSHAP demonstrates optimal predictive accuracy and interpretability, there are some drawbacks and

room for improvement. Firstly, the computation of GradientSHAP can be resource-intensive, particularly with
large-scale datasets, and eventually affect real-time applications. Future research direction will investigate
strategies to optimize SHAP computation for scalability and efficiency. Additionally, the amalgamation of neural
network algorithm with SHAP values will be investigated to further enhance prediction accuracy and
interpretation across multiple data types and domains. Another area of investigation is the impact of weather
indicators over long forecasting periods, considering the impact of climate change and seasonal changes on energy

demand.
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