

World Scientific News

An International Scientific Journal

WSN 197 (2024) 145-148

EISSN 2392-2192

Numerical Analysis as an Interdisciplinary Field

Ezekiel O. Omole^{1,2,*}, Kikelomo Edaogbogun³, Rotimi O. Folaranmi⁴

¹Department of Physical Sciences, Mathematics Programme, Landmark University, Omu- Aran, Kwara State, Nigeria;

²Landmark University SDG 4 (Quality Education Research Group), Omu-Aran, Kwara State, Nigeria.

³Department of Basic Medical Science, College of Health Sciences and Technology, Ijero Ekiti, Ekiti State, Nigeria.

⁴Department of Mathematical and Computing Science, Faculty of Computing and Applied Sciences, Thomas Adewumi University, Oko. Nigeria;

Corresponding author: omolez247@gmail.com

ABSTRACT

Numerical analysis, a core area of applied mathematics, plays an essential role in solving real-world problems across multiple disciplines, including engineering, physics, economics, and biology. The interdisciplinary nature of numerical analysis stems from its fundamental objective: to approximate solutions to complex mathematical models when analytical solutions are not feasible. This paper explores the multidisciplinary applications of numerical analysis, reviewing its role in different fields, methodologies employed, and presenting equations used in diverse contexts. The paper concludes with a discussion of results and potential future developments, illustrating how numerical analysis will continue to shape and drive advancements in science and technology.

Keywords: Numerical analysis, Interdisciplinary, Differential equations, Finite element Method Monte Carlo simulations, Computational methods.

(Received 18 July 2024; Accepted 23 September 2024; Date of Publication 20 October 2024)

1. INTRODUCTION

Numerical analysis is a field that bridges theoretical mathematics with practical applications. Its primary focus is to devise and analyze algorithms that approximate solutions to various mathematical problems, such as differential equations, integrals, and optimization tasks [1]. Given the complexity of real-world phenomena, many of the underlying mathematical models do not have closed-form solutions, requiring numerical methods for their resolution [7].

The interdisciplinary aspect of numerical analysis comes from its usage in fields such as physics, engineering, economics, biology, and computer science [3,8]. These fields require numerical approximations to simulate processes, optimize systems, or predict future behaviour. This paper investigates the importance of numerical analysis as an interdisciplinary tool, exploring its evolution, methodologies, and applications [4-6].

2. LITERATURE REVIEW

Numerical analysis has a long history, with foundational contributions from mathematicians such as Isaac Newton and Carl Friedrich Gauss, who developed algorithms for interpolation, solving systems of equations, and approximating integrals [2]. Early methods were often specific to one problem, but modern developments have generalized numerical methods for broad applicability [7,8].

In engineering, numerical methods such as the Finite Element Method (FEM) and Finite Difference Method (FDM) have been widely adopted. FEM is used for structural analysis in mechanical engineering, solving partial differential equations (PDEs) like the Navier-Stokes equations in fluid dynamics [5,9]. The Navier-Stokes equations, which govern fluid flow, are often written as:

$$\rho(\partial u / \partial t + u \cdot \nabla u) = -\nabla p + \mu \nabla^2 u + f \quad \left(\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla p + \mu \nabla^2 u + f \right)$$

where:

- u is the velocity field,
- p is pressure,
- μ is dynamic viscosity,
- f represents external forces,
- ρ is fluid density.

In economics, numerical techniques such as Monte Carlo methods are utilized for financial modeling and risk assessment [6]. Monte Carlo simulations involve generating random variables to solve complex integrals and differential equations, particularly when deterministic solutions are impractical [2].

The integral approximation involved in such methods can be described as:

$$I \approx \frac{1}{N} \sum_{i=1}^N f(x_i) \quad \text{approx} \quad \frac{1}{N} \sum_{i=1}^N f(x_i) \approx \frac{1}{N} \sum_{i=1}^N f(x_i)$$

where I is the expected value, N is the number of random samples, and $f(x_i)$ is the function evaluated at the random sample points x_i .

In biological systems, numerical analysis is often applied to model population dynamics using differential equations such as the Lotka-Volterra equations, which describe the interaction between predator and prey species:

$$\begin{aligned} dx/dt &= \alpha x - \beta xy, \quad dy/dt = \delta xy - \gamma y \\ &= \alpha x - \beta xy, \quad dy/dt = \delta xy - \gamma y \end{aligned}$$

where x and y represent the populations of prey and predators, respectively, and $\alpha, \beta, \delta, \gamma$ are parameters representing interaction rates [3,13].

3. METHODOLOGY

The interdisciplinary applications of numerical analysis often rely on the development of specific algorithms and their implementation. Among the most common methods are:

- **Finite Difference Method (FDM):** This method replaces the continuous derivatives in differential equations with discrete approximations. For example, the second derivative can be approximated using central differences as [10]:

$$\frac{d^2u}{dx^2} \approx \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} \quad \text{approx} \quad \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} \approx \frac{d^2u}{dx^2}$$

where h is the step size and u_i represents the function values at discrete points.

- **Runge-Kutta Methods:** These are widely used to solve ordinary differential equations (ODEs). For example, the fourth-order Runge-Kutta method is used to approximate the solution of an ODE of the form [11-12]:

$$dy/dx = f(x, y), \quad y(x_0) = y_0 \quad \text{approx} \quad y(x_0) = y_0$$

The method involves four intermediate steps to calculate the solution at each point, providing higher accuracy compared to simpler methods like Euler's method.

- **Monte Carlo Simulations:** This probabilistic approach generates random variables to approximate solutions to integrals or differential equations. It is widely used in physics and finance to model systems with inherent uncertainty [14-15].

4. DISCUSSION OF RESULTS

The results of employing numerical analysis techniques vary based on the problem domain but often lead to substantial improvements in solving complex equations and models that are otherwise unsolvable analytically. In engineering, the use of FEM has led to precise simulations of structures, reducing the need for physical prototypes. Similarly, Monte Carlo simulations in finance allow for better risk management and pricing of complex derivatives.

In biology, numerical simulations provide insights into ecosystems and species interactions, which would be difficult to capture analytically.

The Lotka-Volterra equations, for example, can be solved numerically to predict the long-term behavior of predator-prey dynamics, including potential population oscillations or extinction scenarios.

The interdisciplinary nature of numerical analysis is evident in how these methods are adapted and applied across various scientific disciplines. Regardless of the field, the fundamental goal remains the same: to approximate solutions to complex equations as accurately and efficiently as possible.

5. CONCLUSIONS

Numerical analysis stands as a vital interdisciplinary field, providing tools and methodologies that span a wide range of scientific and engineering disciplines. Whether in physics, economics, or biology, numerical analysis allows researchers to model and solve complex systems, often bridging the gap between theory and real-world applications. As computational power continues to grow, the role of numerical analysis will only increase, driving further innovation and interdisciplinary collaboration.

References

- [1] Burden, R. L., & Faires, J. D. (2011). *Numerical analysis* (9th ed.). Cengage Learning.
- [2] Glasserman, P. (2004). *Monte Carlo methods in financial engineering*. Springer.
- [3] Murray, J. D. (2002). *Mathematical biology I: An introduction* (3rd ed.). Springer.
- [4] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). *Numerical recipes: The art of scientific computing* (3rd ed.). Cambridge University Press.
- [5] Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). *The finite element method: Its basis and fundamentals* (6th ed.). Butterworth-Heinemann.
- [6] Quarteroni, A., Sacco, R., & Saleri, F. (2007). *Numerical Mathematics*. Springer Science & Business Media.
- [7] Trefethen, L. N., & Bau, D. (1997). *Numerical Linear Algebra*. SIAM.
- [8] Morton, K. W., & Mayers, D. F. (2005). *Numerical Solution of Partial Differential Equations: An Introduction*. Cambridge University Press.
- [9] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). *Numerical Recipes: The Art of Scientific Computing* (3rd ed.). Cambridge University Press.
- [10] Kincaid, D. R., & Cheney, W. (2009). *Numerical Analysis: Mathematics of Scientific Computing*. American Mathematical Society.
- [11] Süli, E., & Mayers, D. F. (2003). *An Introduction to Numerical Analysis*. Cambridge University Press.
- [12] Strang, G. (2007). *Computational Science and Engineering*. Wellesley-Cambridge Press.
- [13] Smith, G. D. (1985). *Numerical Solution of Partial Differential Equations: Finite Difference Methods* (3rd ed.). Oxford University Press.
- [14] LeVeque, R. J. (2007). *Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems*. SIAM.
- [15] Babuska, I., & Oden, J. T. (2004). *Verification and Validation in Computational Engineering and Science: Basic Concepts and Applications*. Springer.